IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3047-d799018.html
   My bibliography  Save this article

Trends in Research on Energy Efficiency in Appliances and Correlations with Energy Policies

Author

Listed:
  • David Vérez

    (GREiA Research Group, Universitat de Lleida, Pere de Cabrera s/n, 25001 Lleida, Spain)

  • Emiliano Borri

    (GREiA Research Group, Universitat de Lleida, Pere de Cabrera s/n, 25001 Lleida, Spain)

  • Luisa F. Cabeza

    (GREiA Research Group, Universitat de Lleida, Pere de Cabrera s/n, 25001 Lleida, Spain)

Abstract

According to the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment report, energy-efficient appliances can reduce global electricity consumption even though there is an expected increase in the number and ownership of appliances. The International Energy Agency (IEA) expects a high increase in energy efficiency in traditional appliances (refrigerators, washing machines, television, etc.), and in the number of new appliances installed (also called plug loads). The bibliometric study of publications related to energy-efficient appliances carried out in this paper shows that research on this topic is growing in developed regions (North America and Europe) and even more in some developing regions (Asia Pacific) with a high emphasis on China and India. The results indicate that, in general, policies are always implemented before the core of publications on the topic, with time spans ranging from 3 to 30 years. However, the trend seems to be changing with publications related to new appliances where the core research happens shortly after or in parallel to the establishment of policies.

Suggested Citation

  • David Vérez & Emiliano Borri & Luisa F. Cabeza, 2022. "Trends in Research on Energy Efficiency in Appliances and Correlations with Energy Policies," Energies, MDPI, vol. 15(9), pages 1-17, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3047-:d:799018
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3047/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3047/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mahlia, T. M. I. & Masjuki, H. H. & Saidur, R. & Amalina, M. A., 2004. "Cost-benefit analysis of implementing minimum energy efficiency standards for household refrigerator-freezers in Malaysia," Energy Policy, Elsevier, vol. 32(16), pages 1819-1824, November.
    2. Ward, David O. & Clark, Christopher D. & Jensen, Kimberly L. & Yen, Steven T. & Russell, Clifford S., 2011. "Factors influencing willingness-to-pay for the ENERGY STAR® label," Energy Policy, Elsevier, vol. 39(3), pages 1450-1458, March.
    3. Faure, Corinne & Guetlein, Marie-Charlotte & Schleich, Joachim, 2021. "Effects of rescaling the EU energy label on household preferences for top-rated appliances," Energy Policy, Elsevier, vol. 156(C).
    4. Cabeza, Luisa F. & Ürge-Vorsatz, Diana & Ürge, Daniel & Palacios, Anabel & Barreneche, Camila, 2018. "Household appliances penetration and ownership trends in residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 1-8.
    5. Buonomano, Annamaria & Calise, Francesco & Palombo, Adolfo & Vicidomini, Maria, 2015. "Energy and economic analysis of geothermal–solar trigeneration systems: A case study for a hotel building in Ischia," Applied Energy, Elsevier, vol. 138(C), pages 224-241.
    6. Farhood Sarrafzadeh Javadi & Rahman Saidur, 2021. "Thermodynamic and Energy Efficiency Analysis of a Domestic Refrigerator Using Al 2 O 3 Nano-Refrigerant," Sustainability, MDPI, vol. 13(10), pages 1-15, May.
    7. Nees Jan Eck & Ludo Waltman, 2010. "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(2), pages 523-538, August.
    8. Madurai Elavarasan, Rajvikram & Pugazhendhi, Rishi & Irfan, Muhammad & Mihet-Popa, Lucian & Khan, Irfan Ahmad & Campana, Pietro Elia, 2022. "State-of-the-art sustainable approaches for deeper decarbonization in Europe – An endowment to climate neutral vision," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    9. Cui, Yunhao & Qiao, Jianxin & Song, Bin & Wang, Xiaotao & Yang, Zhaohui & Li, Haibing & Dai, Wei, 2021. "Experimental study of a free piston Stirling cooler with wound wire mesh regenerator," Energy, Elsevier, vol. 234(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konstantinos Sofias & Zoe Kanetaki & Constantinos Stergiou & Sébastien Jacques, 2023. "Combining CAD Modeling and Simulation of Energy Performance Data for the Retrofit of Public Buildings," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    2. Patrick Moriarty & Damon Honnery, 2023. "Rethinking Notions of Energy Efficiency in a Global Context," Energies, MDPI, vol. 16(12), pages 1-14, June.
    3. Ionescu, Romeo-Victor & Zlati, Monica Laura & Antohi, Valentin-Marian & Susanu, Irina Olimpia & Cristache, Nicoleta, 2022. "A new approach on renewable energy as a support for regional economic development among the European Union," Technological Forecasting and Social Change, Elsevier, vol. 184(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olsthoorn, Mark & Schleich, Joachim & Guetlein, Marie-Charlotte & Durand, Antoine & Faure, Corinne, 2023. "Beyond energy efficiency: Do consumers care about life-cycle properties of household appliances?," Energy Policy, Elsevier, vol. 174(C).
    2. Schleich, Joachim & Durand, Antoine & Brugger, Heike, 2021. "How effective are EU minimum energy performance standards and energy labels for cold appliances?," Energy Policy, Elsevier, vol. 149(C).
    3. Lutz Bornmann & Robin Haunschild & Sven E. Hug, 2018. "Visualizing the context of citations referencing papers published by Eugene Garfield: a new type of keyword co-occurrence analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(2), pages 427-437, February.
    4. Akinpelu, O.A. & Olaleye, O. & Fagbola, O., 2023. "The Soil Organic Matter Decomposers: A Bibliometric Analysis," International Journal of Agriculture and Environmental Research, Malwa International Journals Publication, vol. 9(4), August.
    5. Gaviria-Marin, Magaly & Merigó, José M. & Baier-Fuentes, Hugo, 2019. "Knowledge management: A global examination based on bibliometric analysis," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 194-220.
    6. J. Gómez-Verjan & I. Gonzalez-Sanchez & E. Estrella-Parra & R. Reyes-Chilpa, 2015. "Trends in the chemical and pharmacological research on the tropical trees Calophyllum brasiliense and Calophyllum inophyllum, a global context," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(2), pages 1019-1030, November.
    7. Luis Araya-Castillo & Felipe Hernández-Perlines & Hugo Moraga & Antonio Ariza-Montes, 2021. "Scientometric Analysis of Research on Socioemotional Wealth," Sustainability, MDPI, vol. 13(7), pages 1-26, March.
    8. Loet Leydesdorff & Dieter Franz Kogler & Bowen Yan, 2017. "Mapping patent classifications: portfolio and statistical analysis, and the comparison of strengths and weaknesses," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1573-1591, September.
    9. Filippo Corsini & Rafael Laurenti & Franziska Meinherz & Francesco Paolo Appio & Luca Mora, 2019. "The Advent of Practice Theories in Research on Sustainable Consumption: Past, Current and Future Directions of the Field," Sustainability, MDPI, vol. 11(2), pages 1-19, January.
    10. Tuba Bircan & Almila Alkim Akdag Salah, 2022. "A Bibliometric Analysis of the Use of Artificial Intelligence Technologies for Social Sciences," Mathematics, MDPI, vol. 10(23), pages 1-17, November.
    11. Kumari, Rajni & Kumar, Manish & Vivekanand, V. & Pareek, Nidhi, 2023. "Chitin biorefinery: A narrative and prophecy of crustacean shell waste sustainable transformation into bioactives and renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    12. Dilvin Cebi & Melih Soner Celiktas & Hasan Sarptas, 2022. "A Review on Sewage Sludge Valorization via Hydrothermal Carbonization and Applications for Circular Economy," Circular Economy and Sustainability,, Springer.
    13. Muthukumar Perumal & Selvam Sekar & Paula C. S. Carvalho, 2024. "Global Investigations of Seawater Intrusion (SWI) in Coastal Groundwaters in the Last Two Decades (2000–2020): A Bibliometric Analysis," Sustainability, MDPI, vol. 16(3), pages 1-28, February.
    14. Massimiliano M. Pellegrini & Riccardo Rialti & Giacomo Marzi & Andrea Caputo, 2020. "Sport entrepreneurship: A synthesis of existing literature and future perspectives," International Entrepreneurship and Management Journal, Springer, vol. 16(3), pages 795-826, September.
    15. DeLovato, Nicolas & Sundarnath, Kavin & Cvijovic, Lazar & Kota, Krishna & Kuravi, Sarada, 2019. "A review of heat recovery applications for solar and geothermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    16. David Vérez & Luisa F. Cabeza, 2021. "Which Building Services Are Considered to Have Impact on Climate Change?," Energies, MDPI, vol. 14(13), pages 1-16, June.
    17. María Pinto & Rosaura Fernández-Pascual & David Caballero-Mariscal & Dora Sales, 2020. "Information literacy trends in higher education (2006–2019): visualizing the emerging field of mobile information literacy," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1479-1510, August.
    18. Francesco Ciampi & Alessandro Giannozzi & Giacomo Marzi & Edward I. Altman, 2021. "Rethinking SME default prediction: a systematic literature review and future perspectives," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 2141-2188, March.
    19. Jiaxing Wang & Shigeru Matsumoto, 2022. "An economic model of home appliance replacement: application to refrigerator replacement among Japanese households," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 24(1), pages 29-48, January.
    20. Giovanni Matteo & Pierfrancesco Nardi & Stefano Grego & Caterina Guidi, 2018. "Bibliometric analysis of Climate Change Vulnerability Assessment research," Environment Systems and Decisions, Springer, vol. 38(4), pages 508-516, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3047-:d:799018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.