IDEAS home Printed from https://ideas.repec.org/p/zbw/fisisi/s112020.html
   My bibliography  Save this paper

Effects of rescaling the EU energy label on household preferences for top-rated appliances

Author

Listed:
  • Faure, Corinne
  • Guetlein, Marie-Charlotte
  • Schleich, Joachim

Abstract

The European Union has decided to replace its current A+++ to D labelling scheme for cold appliances with a rescaled A to G labelling scheme. Employing a demographically representative discrete choice experiment on refrigerator adoption using an online survey among more than 1000 households in Germa-ny, this paper explores the effects of the rescaled scheme compared to the old scheme on the stated uptake of top-rated refrigerators. Since in practice both schemes will be shown for a transitory period, the paper also analyses the ef-fects of displaying both labels simultaneously. The findings from estimating a mixed logit model suggest that showing the rescaled A to G label alone signifi-cantly increases valuation of top-rated refrigerators compared to showing the current A+++ to D label alone. In comparison, when the A+++ to D and the re-scaled A to G schemes are shown simultaneously, no benefits of introducing the rescaled label are found. Thus, policymakers should strive to enforce the application of the rescaled label scheme as quickly as possible and to shorten transitory periods where both labels are shown simultaneously.

Suggested Citation

  • Faure, Corinne & Guetlein, Marie-Charlotte & Schleich, Joachim, 2020. "Effects of rescaling the EU energy label on household preferences for top-rated appliances," Working Papers "Sustainability and Innovation" S11/2020, Fraunhofer Institute for Systems and Innovation Research (ISI).
  • Handle: RePEc:zbw:fisisi:s112020
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/225009/1/173477410X.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Truffer, Bernhard & Markard, Jochen & Wustenhagen, Rolf, 2001. "Eco-labeling of electricity--strategies and tradeoffs in the definition of environmental standards," Energy Policy, Elsevier, vol. 29(11), pages 885-897, September.
    2. Lucas W. Davis & Gilbert E. Metcalf, 2016. "Does Better Information Lead to Better Choices? Evidence from Energy-Efficiency Labels," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(3), pages 589-625.
    3. Hensher, David A., 2010. "Hypothetical bias, choice experiments and willingness to pay," Transportation Research Part B: Methodological, Elsevier, vol. 44(6), pages 735-752, July.
    4. Zha, Donglan & Yang, Guanglei & Wang, Wenzhong & Wang, Qunwei & Zhou, Dequn, 2020. "Appliance energy labels and consumer heterogeneity: A latent class approach based on a discrete choice experiment in China," Energy Economics, Elsevier, vol. 90(C).
    5. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, January.
    6. Zhou, Hui & Bukenya, James O., 2016. "Information inefficiency and willingness-to-pay for energy-efficient technology: A stated preference approach for China Energy Label," Energy Policy, Elsevier, vol. 91(C), pages 12-21.
    7. Bjerregaard, Casper & Møller, Niels Framroze, 2019. "The impact of EU's energy labeling policy: An econometric analysis of increased transparency in the market for cold appliances in Denmark," Energy Policy, Elsevier, vol. 128(C), pages 891-899.
    8. David Revelt & Kenneth Train, 1998. "Mixed Logit With Repeated Choices: Households' Choices Of Appliance Efficiency Level," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 647-657, November.
    9. Schleich, Joachim & Durand, Antoine & Brugger, Heike, 2021. "How effective are EU minimum energy performance standards and energy labels for cold appliances?," Energy Policy, Elsevier, vol. 149(C).
    10. Liu, Tiantian & Wang, Qunwei & Su, Bin, 2016. "A review of carbon labeling: Standards, implementation, and impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 68-79.
    11. Richard G. Newell & Juha Siikamäki, 2014. "Nudging Energy Efficiency Behavior: The Role of Information Labels," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 1(4), pages 555-598.
    12. Stefanie Lena Heinzle & Rolf Wüstenhagen, 2012. "Dynamic Adjustment of Eco‐labeling Schemes and Consumer Choice – the Revision of the EU Energy Label as a Missed Opportunity?," Business Strategy and the Environment, Wiley Blackwell, vol. 21(1), pages 60-70, January.
    13. Andor, Mark A. & Frondel, Manuel & Gerster, Andreas & Sommer, Stephan, 2019. "Cognitive reflection and the valuation of energy efficiency," Energy Economics, Elsevier, vol. 84(S1).
    14. Ward, David O. & Clark, Christopher D. & Jensen, Kimberly L. & Yen, Steven T. & Russell, Clifford S., 2011. "Factors influencing willingness-to-pay for the ENERGY STAR® label," Energy Policy, Elsevier, vol. 39(3), pages 1450-1458, March.
    15. Mark A. Andor, Andreas Gerster, and Stephan Sommer, 2020. "Consumer Inattention, Heuristic Thinking and the Role of Energy Labels," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    16. Saidur, R. & Masjuki, H. H. & Mahlia, T. M. I., 2005. "Labeling design effort for household refrigerator-freezers in Malaysia," Energy Policy, Elsevier, vol. 33(5), pages 611-618, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Vérez & Emiliano Borri & Luisa F. Cabeza, 2022. "Trends in Research on Energy Efficiency in Appliances and Correlations with Energy Policies," Energies, MDPI, vol. 15(9), pages 1-17, April.
    2. Katarzyna Stasiuk & Dominika Maison, 2022. "The Influence of New and Old Energy Labels on Consumer Judgements and Decisions about Household Appliances," Energies, MDPI, vol. 15(4), pages 1-13, February.
    3. Diego Menegon & Daniela Lobosco & Leopoldo Micò & Joana Fernandes, 2021. "Labeling of Installed Heating Appliances in Residential Buildings: An Energy Labeling Methodology for Improving Consumers’ Awareness," Energies, MDPI, vol. 14(21), pages 1-17, October.
    4. Olsthoorn, Mark & Schleich, Joachim & Guetlein, Marie-Charlotte & Durand, Antoine & Faure, Corinne, 2023. "Beyond energy efficiency: Do consumers care about life-cycle properties of household appliances?," Energy Policy, Elsevier, vol. 174(C).
    5. Andrés Felipe Ramírez Sánchez & Juan Sebastián Solís-Chaves & Andrea del Pilar Rodríguez-Muñoz & Luis Alejandro Arias Barragán & Diana Ximena Serna-Pérez & Omar Fredy Prías Caicedo, 2022. "Residential Refrigeration MEPS in Colombia: A Review and a Comparative Analysis," Energies, MDPI, vol. 15(17), pages 1-35, September.
    6. Schleich, Joachim & Durand, Antoine & Brugger, Heike, 2021. "How effective are EU minimum energy performance standards and energy labels for cold appliances?," Energy Policy, Elsevier, vol. 149(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olsthoorn, Mark & Schleich, Joachim & Guetlein, Marie-Charlotte & Durand, Antoine & Faure, Corinne, 2023. "Beyond energy efficiency: Do consumers care about life-cycle properties of household appliances?," Energy Policy, Elsevier, vol. 174(C).
    2. Schleich, Joachim & Durand, Antoine & Brugger, Heike, 2021. "How effective are EU minimum energy performance standards and energy labels for cold appliances?," Energy Policy, Elsevier, vol. 149(C).
    3. Schleich, Joachim & Faure, Corinne & Guetlein, Marie-Charlotte & Tu, Gengyang, 2020. "Conveyance, envy, and homeowner choice of appliances," Energy Economics, Elsevier, vol. 89(C).
    4. Stefano Ceolotto & Eleanor Denny, 2021. "Putting a new 'spin' on energy labels: measuring the impact of reframing energy efficiency on tumble dryer choices in a multi-country experiment," Trinity Economics Papers tep1521, Trinity College Dublin, Department of Economics.
    5. Huh, Sung-Yoon & Jo, Manseok & Shin, Jungwoo & Yoo, Seung-Hoon, 2019. "Impact of rebate program for energy-efficient household appliances on consumer purchasing decisions: The case of electric rice cookers in South Korea," Energy Policy, Elsevier, vol. 129(C), pages 1394-1403.
    6. Dalia Streimikiene & Tomas Balezentis & Ilona Alisauskaite-Seskiene & Gintare Stankuniene & Zaneta Simanaviciene, 2019. "A Review of Willingness to Pay Studies for Climate Change Mitigation in the Energy Sector," Energies, MDPI, vol. 12(8), pages 1-38, April.
    7. He, Shutong & Blasch, Julia & van Beukering, Pieter & Wang, Junfeng, 2022. "Energy labels and heuristic decision-making: The role of cognition and energy literacy," Energy Economics, Elsevier, vol. 114(C).
    8. Mitsutsugu Hamamoto, 2023. "Estimating consumers’ discount rates in energy-saving investment decisions: a comparison of revealed and stated approaches," SN Business & Economics, Springer, vol. 3(7), pages 1-19, July.
    9. Amaia de Ayala & María del Mar Solà, 2022. "Assessing the EU Energy Efficiency Label for Appliances: Issues, Potential Improvements and Challenges," Energies, MDPI, vol. 15(12), pages 1-25, June.
    10. Brent, Daniel A. & Ward, Michael B., 2018. "Energy efficiency and financial literacy," Journal of Environmental Economics and Management, Elsevier, vol. 90(C), pages 181-216.
    11. Schleich, Joachim & Tu, Gengyang & Faure, Corinne & Guetlein, Marie-Charlotte, 2021. "Would you prefer to rent rather than own your new heating system? Insights from a discrete choice experiment among owner-occupiers in the UK," Energy Policy, Elsevier, vol. 158(C).
    12. Charu Grover & Sangeeta Bansal & Adan L. Martinez-Cruz, "undated". "Influence of Social Network Effect and Incentive on Choice of Star Labeled Cars in India: A Latent Class Approach based on Choice Experiment," Centre for International Trade and Development, Jawaharlal Nehru University, New Delhi Discussion Papers 18-05, Centre for International Trade and Development, Jawaharlal Nehru University, New Delhi, India.
    13. Hassan Harajli & Ali Chalak, 2019. "Willingness to Pay for Energy Efficient Appliances: The Case of Lebanese Consumers," Sustainability, MDPI, vol. 11(20), pages 1-20, October.
    14. He, Shutong & Blasch, Julia & van Beukering, Pieter, 2022. "How does information on environmental emissions influence appliance choice? The role of values and perceived environmental impacts," Energy Policy, Elsevier, vol. 168(C).
    15. Louis-Gaëtan Giraudet, 2018. "Energy efficiency as a credence good: A review of informational barriers to building energy savings," Working Papers 2018.07, FAERE - French Association of Environmental and Resource Economists.
    16. Miwa Nakai & Majah-Leah V. Ravago & Yoichi Miyaoka & Kiyoshi Saito & Toshi. H Arimura, 2022. "Consumers' Preferences for Energy-Efficient Air Conditioners in a Developing Country: A Discrete Choice Experiment Using Eco Labels," Working Papers e166, Tokyo Center for Economic Research.
    17. Spurlock, C. Anna & Fujita, K. Sydny, 2022. "Equity implications of market structure and appliance energy efficiency regulation," Energy Policy, Elsevier, vol. 165(C).
    18. Schleich, Joachim & Gassmann, Xavier & Faure, Corinne & Meissner, Thomas, 2016. "Making the implicit explicit: A look inside the implicit discount rate," Energy Policy, Elsevier, vol. 97(C), pages 321-331.
    19. Jacobsen, Grant D., 2015. "Do energy prices influence investment in energy efficiency? Evidence from energy star appliances," Journal of Environmental Economics and Management, Elsevier, vol. 74(C), pages 94-106.
    20. Tu, Gengyang & Faure, Corinne & Schleich, Joachim & Guetlein, Marie-Charlotte, 2021. "The heat is off! The role of technology attributes and individual attitudes in the diffusion of Smart thermostats – findings from a multi-country survey," Technological Forecasting and Social Change, Elsevier, vol. 163(C).

    More about this item

    Keywords

    energy efficiency; energy label; appliances; choice experiment;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:fisisi:s112020. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/isfhgde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.