IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8339-d966561.html
   My bibliography  Save this article

An Integrated Approach to Long-Term Fuel Supply Planning in Combined Heat and Power Systems

Author

Listed:
  • Pablo Benalcazar

    (Division of Energy Economics, Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Ul. J. Wybickiego 7A, 31-261 Kraków, Poland)

  • Jacek Kamiński

    (Division of Energy Economics, Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Ul. J. Wybickiego 7A, 31-261 Kraków, Poland)

  • Karol Stós

    (Division of Energy Economics, Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Ul. J. Wybickiego 7A, 31-261 Kraków, Poland)

Abstract

This paper examines the issue of strategic planning of fuel supplies in combined heat and power systems. This is a major challenge in energy modeling because heating-degree day calculation methods only address short-term horizons and are not suitable for the long-term planning of fuel supplies. In this work, a comprehensive method is proposed for strategic fuel supply planning of independent heat producers. The method considers changes in the market dynamics of residential and commercial properties, the annual rate of customer acquisition by the network operator, customer disconnections, as well as the thermal modernization of buildings for estimating the long-term thermal energy demand of an urban area. Moreover, the method develops a mathematical model to minimize production costs, taking into account the technical constraints of the system. The proposed strategic planning tool, in addition to information on the quantities of fuel consumed for heat and electricity production, also provides valuable management information on the operational costs of the CHP system and its environmental impact. The application of the method is illustrated with the analysis of a large-scale combined heat and power plant supplying heat and electricity to a city with over 500,000 inhabitants. The results indicate that depending on the changes in the primary and secondary heat markets, the demand for energy carriers may range from 107.37 TWh to 119.87 TWh.

Suggested Citation

  • Pablo Benalcazar & Jacek Kamiński & Karol Stós, 2022. "An Integrated Approach to Long-Term Fuel Supply Planning in Combined Heat and Power Systems," Energies, MDPI, vol. 15(22), pages 1-22, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8339-:d:966561
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8339/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8339/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Verbruggen, Aviel & Dewallef, Pierre & Quoilin, Sylvain & Wiggin, Michael, 2013. "Unveiling the mystery of Combined Heat & Power (cogeneration)," Energy, Elsevier, vol. 61(C), pages 575-582.
    2. Bush, Ruth E. & Bale, Catherine S.E. & Taylor, Peter G., 2016. "Realising local government visions for developing district heating: Experiences from a learning country," Energy Policy, Elsevier, vol. 98(C), pages 84-96.
    3. Liu, Chiun-Ming & Sherali, Hanif D., 2000. "A coal shipping and blending problem for an electric utility company," Omega, Elsevier, vol. 28(4), pages 433-444, August.
    4. E. Spyrou & B. F. Hobbs & M. D. Bazilian & D. Chattopadhyay, 2019. "Planning power systems in fragile and conflict-affected states," Nature Energy, Nature, vol. 4(4), pages 300-310, April.
    5. Martínez-de-Alegría, Itziar & Río, Rosa-María & Zarrabeitia, Enara & Álvarez, Izaskun, 2021. "Heating demand as an energy performance indicator: A case study of buildings built under the passive house standard in Spain," Energy Policy, Elsevier, vol. 159(C).
    6. Shiromaru, Isao & Inuiguchi, Masahiro & Sakawa, Masatoshi, 2000. "A fuzzy satisficing method for electric power plant coal purchase using genetic algorithms," European Journal of Operational Research, Elsevier, vol. 126(1), pages 218-230, October.
    7. Jessica Thomsen & Noha Saad Hussein & Arnold Dolderer & Christoph Kost, 2021. "Effect of the Foresight Horizon on Computation Time and Results Using a Regional Energy Systems Optimization Model," Energies, MDPI, vol. 14(2), pages 1-22, January.
    8. Pablo Benalcazar & Przemysław Kaszyński & Jacek Kamiński, 2021. "Assessing the Effects of Uncertain Energy and Carbon Prices on the Operational Patterns and Economic Results of CHP Systems," Energies, MDPI, vol. 14(24), pages 1-19, December.
    9. Bruglieri, Maurizio & Liberti, Leo, 2008. "Optimal running and planning of a biomass-based energy production process," Energy Policy, Elsevier, vol. 36(7), pages 2430-2438, July.
    10. Daniela Guericke & Ignacio Blanco & Juan M. Morales & Henrik Madsen, 2020. "A two-phase stochastic programming approach to biomass supply planning for combined heat and power plants," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(4), pages 863-900, December.
    11. Prasad, Sanjeev K. & Mangaraj, B.K., 2022. "A multi-objective competitive-design framework for fuel procurement planning in coal-fired power plants for sustainable operations," Energy Economics, Elsevier, vol. 108(C).
    12. De Meyer, Annelies & Cattrysse, Dirk & Van Orshoven, Jos, 2015. "A generic mathematical model to optimise strategic and tactical decisions in biomass-based supply chains (OPTIMASS)," European Journal of Operational Research, Elsevier, vol. 245(1), pages 247-264.
    13. Hietaharju, Petri & Pulkkinen, Jari & Ruusunen, Mika & Louis, Jean-Nicolas, 2021. "A stochastic dynamic building stock model for determining long-term district heating demand under future climate change," Applied Energy, Elsevier, vol. 295(C).
    14. Benalcazar, Pablo, 2021. "Optimal sizing of thermal energy storage systems for CHP plants considering specific investment costs: A case study," Energy, Elsevier, vol. 234(C).
    15. Sandberg, Nina Holck & Næss, Jan Sandstad & Brattebø, Helge & Andresen, Inger & Gustavsen, Arild, 2021. "Large potentials for energy saving and greenhouse gas emission reductions from large-scale deployment of zero emission building technologies in a national building stock," Energy Policy, Elsevier, vol. 152(C).
    16. Oliver, John J. & Parrett, Emma, 2018. "Managing future uncertainty: Reevaluating the role of scenario planning," Business Horizons, Elsevier, vol. 61(2), pages 339-352.
    17. Liz Wachs & Shweta Singh, 2020. "Projecting the urban energy demand for Indiana, USA, in 2050 and 2080," Climatic Change, Springer, vol. 163(4), pages 1949-1966, December.
    18. Palander, Teijo & Voutilainen, Juuso, 2013. "A decision support system for optimal storing and supply of wood in a Finnish CHP plant," Renewable Energy, Elsevier, vol. 52(C), pages 88-94.
    19. Tiago Pinto & Zita Vale & Isabel Praça & E. J. Solteiro Pires & Fernando Lopes, 2015. "Decision Support for Energy Contracts Negotiation with Game Theory and Adaptive Learning," Energies, MDPI, vol. 8(9), pages 1-26, September.
    20. Mavrotas, George & Florios, Kostas & Vlachou, Dimitra, 2010. "Energy planning of a hospital using Mathematical Programming and Monte Carlo simulation for dealing with uncertainty in the economic parameters," MPRA Paper 105754, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barbosa-Póvoa, Ana Paula & da Silva, Cátia & Carvalho, Ana, 2018. "Opportunities and challenges in sustainable supply chain: An operations research perspective," European Journal of Operational Research, Elsevier, vol. 268(2), pages 399-431.
    2. Guangxuan Wang & Julien Blondeau, 2022. "Multi-Objective Optimal Integration of Solar Heating and Heat Storage into Existing Fossil Fuel-Based Heat and Power Production Systems," Energies, MDPI, vol. 15(5), pages 1-21, March.
    3. Pablo Benalcazar & Przemysław Kaszyński & Jacek Kamiński, 2021. "Assessing the Effects of Uncertain Energy and Carbon Prices on the Operational Patterns and Economic Results of CHP Systems," Energies, MDPI, vol. 14(24), pages 1-19, December.
    4. Daniela Guericke & Ignacio Blanco & Juan M. Morales & Henrik Madsen, 2020. "A two-phase stochastic programming approach to biomass supply planning for combined heat and power plants," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(4), pages 863-900, December.
    5. Muthu Kumaran Gunasegaran & Md Hasanuzzaman & ChiaKwang Tan & Ab Halim Abu Bakar & Vignes Ponniah, 2022. "Energy Analysis, Building Energy Index and Energy Management Strategies for Fast-Food Restaurants in Malaysia," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    6. Mihai Daniel Roman & Diana Mihaela Stanculescu, 2021. "An Analysis of Countries’ Bargaining Power Derived from the Natural Gas Transportation System Using a Cooperative Game Theory Model," Energies, MDPI, vol. 14(12), pages 1-13, June.
    7. Anna Danandeh & Bo Zeng & Brent Caldwell & Brian Buckley, 2016. "A Decision Support System for Fuel Supply Chain Design at Tampa Electric Company," Interfaces, INFORMS, vol. 46(6), pages 503-521, December.
    8. Ana Mafalda Matos & João M. P. Q. Delgado & Ana Sofia Guimarães, 2022. "Energy-Efficiency Passive Strategies for Mediterranean Climate: An Overview," Energies, MDPI, vol. 15(7), pages 1-20, April.
    9. Behzadi, Amirmohammad & Holmberg, Sture & Duwig, Christophe & Haghighat, Fariborz & Ooka, Ryozo & Sadrizadeh, Sasan, 2022. "Smart design and control of thermal energy storage in low-temperature heating and high-temperature cooling systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    10. Mohseni, Soheil & Brent, Alan C. & Burmester, Daniel, 2020. "A comparison of metaheuristics for the optimal capacity planning of an isolated, battery-less, hydrogen-based micro-grid," Applied Energy, Elsevier, vol. 259(C).
    11. Kaandorp, Chelsea & Miedema, Tes & Verhagen, Jeroen & van de Giesen, Nick & Abraham, Edo, 2022. "Reducing committed emissions of heating towards 2050: Analysis of scenarios for the insulation of buildings and the decarbonisation of electricity generation," Applied Energy, Elsevier, vol. 325(C).
    12. Egging-Bratseth, Ruud & Kauko, Hanne & Knudsen, Brage Rugstad & Bakke, Sara Angell & Ettayebi, Amina & Haufe, Ina Renate, 2021. "Seasonal storage and demand side management in district heating systems with demand uncertainty," Applied Energy, Elsevier, vol. 285(C).
    13. Abokersh, Mohamed Hany & Vallès, Manel & Cabeza, Luisa F. & Boer, Dieter, 2020. "A framework for the optimal integration of solar assisted district heating in different urban sized communities: A robust machine learning approach incorporating global sensitivity analysis," Applied Energy, Elsevier, vol. 267(C).
    14. Palander, Teijo & Haavikko, Hanna & Kärhä, Kalle, 2018. "Towards sustainable wood procurement in forest industry – The energy efficiency of larger and heavier vehicles in Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 100-118.
    15. Tomasz Zema & Adam Sulich, 2022. "Models of Electricity Price Forecasting: Bibliometric Research," Energies, MDPI, vol. 15(15), pages 1-18, August.
    16. Mavrotas, George & Figueira, José Rui & Siskos, Eleftherios, 2015. "Robustness analysis methodology for multi-objective combinatorial optimization problems and application to project selection," Omega, Elsevier, vol. 52(C), pages 142-155.
    17. Caner TaskIn, Z. & Tamer Ünal, A., 2009. "Tactical level planning in float glass manufacturing with co-production, random yields and substitutable products," European Journal of Operational Research, Elsevier, vol. 199(1), pages 252-261, November.
    18. Tang, J.P. & Lam, H.L. & Abdul Aziz, M.K. & Morad, N.A., 2017. "Palm biomass strategic resource managment – A competitive game analysis," Energy, Elsevier, vol. 118(C), pages 456-463.
    19. Robert Lindner, 2023. "Green hydrogen partnerships with the Global South. Advancing an energy justice perspective on “tomorrow's oil”," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(2), pages 1038-1053, April.
    20. Zhongyao Cai & Xiaohui Yang & Huaxing Lin & Xinyu Yang & Ping Jiang, 2022. "Study on the Co-Benefits of Air Pollution Control and Carbon Reduction in the Yellow River Basin: An Assessment Based on a Spatial Econometric Model," IJERPH, MDPI, vol. 19(8), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8339-:d:966561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.