IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p8283-d964582.html
   My bibliography  Save this article

Quantification of the Impact of Solar Water Heating and Influence of Its Potential Utilization through Strategic Campaign: Case Study in Dimbaza, South Africa

Author

Listed:
  • Sinethemba Peter

    (Department of Geography, Environmental Management and Energy Studies, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa)

  • Njabulo Kambule

    (Department of Geography, Environmental Management and Energy Studies, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa)

  • Stephen Tangwe

    (Department of Electrical, Electronic and Computer Engineering, Faculty of Engineering and Built Engineering, Central University of Technology, Bloemfontein 9300, South Africa)

  • Kowiyou Yessoufou

    (Department of Geography, Environmental Management and Energy Studies, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa)

Abstract

This paper ascertained the performance of the evacuated tube solar water heater (SWH) coupled with an auxiliary electric heater with reference to the replaced electric water heater with the same storage tank capacity (200 L) in a building. It also examines the influence of the uptake of the SWHs in the community due to different campaign methods. The study evaluated the performance of a 4 kW electric water heater and a 2 kW input SWH with an auxiliary electric heater, and quantified the annual energy and cost savings. A survey using questionnaires was conducted among 150 residences in Dimbaza based on the house representative’s perceptions to replace their electric water heaters with solar water heaters (based on the monetary saving inscribed on the solar water heaters, the sensitization of the target population on the environmental benefits of the solar water heaters and both the monetary savings and environmental benefits). The findings revealed that by replacing the electric water heater with the solar water heater with an auxiliary electric heater, the annual electricity savings due to hot water heating was 4408.99 kWh and the net present value payback period was 4.32 years. The desire of the household representatives to replace their existing electric water heaters with solar water heaters due to the campaign strategies increased from 75 to 126. This study is capable of providing a mechanism to increase the penetration of solar water heaters and justifying the techno-economic viability of solar water heaters.

Suggested Citation

  • Sinethemba Peter & Njabulo Kambule & Stephen Tangwe & Kowiyou Yessoufou, 2022. "Quantification of the Impact of Solar Water Heating and Influence of Its Potential Utilization through Strategic Campaign: Case Study in Dimbaza, South Africa," Energies, MDPI, vol. 15(21), pages 1-14, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8283-:d:964582
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/8283/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/8283/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cassard, Hannah & Denholm, Paul & Ong, Sean, 2011. "Technical and economic performance of residential solar water heating in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3789-3800.
    2. Sebitosi, A.B. & Pillay, P., 2008. "Renewable energy and the environment in South Africa: A way forward," Energy Policy, Elsevier, vol. 36(9), pages 3312-3316, September.
    3. Ayompe, L.M. & Duffy, A. & Mc Keever, M. & Conlon, M. & McCormack, S.J., 2011. "Comparative field performance study of flat plate and heat pipe evacuated tube collectors (ETCs) for domestic water heating systems in a temperate climate," Energy, Elsevier, vol. 36(5), pages 3370-3378.
    4. Jon Nelson & Peter Kennedy, 2009. "The Use (and Abuse) of Meta-Analysis in Environmental and Natural Resource Economics: An Assessment," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 42(3), pages 345-377, March.
    5. Kalogirou, Soteris, 1996. "Economic analysis of solar energy systems using spreadsheets," Renewable Energy, Elsevier, vol. 9(1), pages 1303-1307.
    6. Li, Wei & Song, Guojun & Beresford, Melanie & Ma, Ben, 2011. "China's transition to green energy systems: The economics of home solar water heaters and their popularization in Dezhou city," Energy Policy, Elsevier, vol. 39(10), pages 5909-5919, October.
    7. Alexandru Şerban & Nicoleta Bărbuţă-Mişu & Nicoleta Ciucescu & Simona Paraschiv & Spiru Paraschiv, 2016. "Economic and Environmental Analysis of Investing in Solar Water Heating Systems," Sustainability, MDPI, vol. 8(12), pages 1-21, December.
    8. Roulleau, T. & Lloyd, C.R., 2008. "International policy issues regarding solar water heating, with a focus on New Zealand," Energy Policy, Elsevier, vol. 36(6), pages 1843-1857, June.
    9. Gobong Choi & Eunnyeong Heo & Chul-Yong Lee, 2018. "Dynamic Economic Analysis of Subsidies for New and Renewable Energy in South Korea," Sustainability, MDPI, vol. 10(6), pages 1-19, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yurtsev, Arif & Jenkins, Glenn P., 2016. "Cost-effectiveness analysis of alternative water heater systems operating with unreliable water supplies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 174-183.
    2. Ma, Ben & Song, Guojun & Smardon, Richard C. & Chen, Jing, 2014. "Diffusion of solar water heaters in regional China: Economic feasibility and policy effectiveness evaluation," Energy Policy, Elsevier, vol. 72(C), pages 23-34.
    3. Friedrich Ferrer, Philippe Alberto, 2017. "Average economic performance of solar water heaters for low density dwellings across South Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 507-515.
    4. Wang, Zhangyuan & Yang, Wansheng & Qiu, Feng & Zhang, Xiangmei & Zhao, Xudong, 2015. "Solar water heating: From theory, application, marketing and research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 68-84.
    5. Arif Yurtsev & Glenn P Jenkins, 2016. "An economic analysis of policies for promoting economically efficient water heater systems operating under seasonal climatic conditions," Energy & Environment, , vol. 27(2), pages 227-240, March.
    6. Lin, W.M. & Chang, K.C. & Chung, K.M., 2015. "Payback period for residential solar water heaters in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 901-906.
    7. Keh-Chin Chang & Wei-Min Lin & Kung-Ming Chung, 2015. "Sustainable Development for Solar Heating Systems in Taiwan," Sustainability, MDPI, vol. 7(2), pages 1-15, February.
    8. Karki, Saroj & Haapala, Karl R. & Fronk, Brian M., 2019. "Technical and economic feasibility of solar flat-plate collector thermal energy systems for small and medium manufacturers," Applied Energy, Elsevier, vol. 254(C).
    9. Wei-Min Lin & Keh-Chin Chang & Yi-Mei Liu & Kung-Ming Chung, 2012. "Field Surveys of Non-Residential Solar Water Heating Systems in Taiwan," Energies, MDPI, vol. 5(2), pages 1-12, February.
    10. Chang, Pao-Long & Ho, Shu-Ping & Hsu, Chiung-Wen, 2013. "Dynamic simulation of government subsidy policy effects on solar water heaters installation in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 385-396.
    11. Havranek, Tomas & Irsova, Zuzana, 2011. "Estimating vertical spillovers from FDI: Why results vary and what the true effect is," Journal of International Economics, Elsevier, vol. 85(2), pages 234-244.
    12. Van Houtven, George L. & Pattanayak, Subhrendu K. & Usmani, Faraz & Yang, Jui-Chen, 2017. "What are Households Willing to Pay for Improved Water Access? Results from a Meta-Analysis," Ecological Economics, Elsevier, vol. 136(C), pages 126-135.
    13. Tomáš Havránek & Jana Sedlaříková, 2014. "Meta-analýza důchodové elasticity poptávky po penězích [A Meta-Analysis of the Income Elasticity of Money Demand]," Politická ekonomie, Prague University of Economics and Business, vol. 2014(3), pages 366-382.
    14. Hermine Vedogbeton & Robert J. Johnston, 2020. "Commodity Consistent Meta-Analysis of Wetland Values: An Illustration for Coastal Marsh Habitat," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(4), pages 835-865, April.
    15. Sovacool, Benjamin K. & Martiskainen, Mari, 2020. "Hot transformations: Governing rapid and deep household heating transitions in China, Denmark, Finland and the United Kingdom," Energy Policy, Elsevier, vol. 139(C).
    16. Neves, Pedro Cunha & Afonso, Oscar & Silva, Diana & Sochirca, Elena, 2021. "The link between intellectual property rights, innovation, and growth: A meta-analysis," Economic Modelling, Elsevier, vol. 97(C), pages 196-209.
    17. Dimos, Christos & Pugh, Geoff & Hisarciklilar, Mehtap & Talam, Ema & Jackson, Ian, 2022. "The relative effectiveness of R&D tax credits and R&D subsidies: A comparative meta-regression analysis," Technovation, Elsevier, vol. 115(C).
    18. Lohwasser, Todor S., 2020. "Meta-analyzing the relative performance of venture capital-backed firms," Discussion Papers of the Institute for Organisational Economics 4/2020, University of Münster, Institute for Organisational Economics.
    19. Cansino, José M. & Pablo-Romero, María del P. & Román, Rocío & Yñiguez, Rocío, 2011. "Promoting renewable energy sources for heating and cooling in EU-27 countries," Energy Policy, Elsevier, vol. 39(6), pages 3803-3812, June.
    20. Nils Ohlendorf & Michael Jakob & Jan Christoph Minx & Carsten Schröder & Jan Christoph Steckel, 2021. "Distributional Impacts of Carbon Pricing: A Meta-Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 78(1), pages 1-42, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8283-:d:964582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.