IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i5p3370-3378.html
   My bibliography  Save this article

Comparative field performance study of flat plate and heat pipe evacuated tube collectors (ETCs) for domestic water heating systems in a temperate climate

Author

Listed:
  • Ayompe, L.M.
  • Duffy, A.
  • Mc Keever, M.
  • Conlon, M.
  • McCormack, S.J.

Abstract

This paper presents a year round energy performance monitoring results of two solar water heaters with 4m2 flat plate and 3m2 heat pipe evacuated tube collectors (ETCs)operating under the same weather conditions in Dublin, Ireland. The energy performance of the two systems was compared on daily, monthly and yearly basis. Results obtained showed that for an annual total in-plane solar insolation of 1087kWhm−2, a total of 1984kWh and 2056kWh of heat energy were collected by the 4m2 FPC and 3m2 ETC systems respectively. Over the year, a unit area of the FPC and ETC each generated 496kWhm−2 and 681kWhm−2 of heat respectively. For 3149.7kWh and 3053.6kWh of auxiliary energy supplied to the FPC and ETC systems their annual solar fractions (SFs) were 38.6% and 40.2% respectively. The annual average collector efficiencies were 46.1% and 60.7% while the system efficiencies were 37.9% and 50.3% respectively for the FPC and ETC respectively. Economic analysis showed that both solar water heating (SWH) systems are not economically viable with NPVs ranging between −€4,264 and −€652 while simple payback periods (SPPs) varied between 13 years and 48.5 years.

Suggested Citation

  • Ayompe, L.M. & Duffy, A. & Mc Keever, M. & Conlon, M. & McCormack, S.J., 2011. "Comparative field performance study of flat plate and heat pipe evacuated tube collectors (ETCs) for domestic water heating systems in a temperate climate," Energy, Elsevier, vol. 36(5), pages 3370-3378.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:5:p:3370-3378
    DOI: 10.1016/j.energy.2011.03.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211002003
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.03.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Jinbao & Pu, Shaoxuan & Gao, Wenfeng & Que, Yi, 2010. "Experimental investigation on thermal performance of thermosyphon flat-plate solar water heater with a mantle heat exchanger," Energy, Elsevier, vol. 35(9), pages 3563-3568.
    2. Roonprasang, Natthaphon & Namprakai, Pichai & Pratinthong, Naris, 2008. "Experimental studies of a new solar water heater system using a solar water pump," Energy, Elsevier, vol. 33(4), pages 639-646.
    3. Hammad, M., 1995. "Experimental study of the performance of a solar collector cooled by heat pipes," Renewable Energy, Elsevier, vol. 6(1), pages 11-15.
    4. Alvarez, A. & Cabeza, O. & Muñiz, M.C. & Varela, L.M., 2010. "Experimental and numerical investigation of a flat-plate solar collector," Energy, Elsevier, vol. 35(9), pages 3707-3716.
    5. Chien, C.C. & Kung, C.K. & Chang, C.C. & Lee, W.S. & Jwo, C.S. & Chen, S.L., 2011. "Theoretical and experimental investigations of a two-phase thermosyphon solar water heater," Energy, Elsevier, vol. 36(1), pages 415-423.
    6. Al-Nimr, M.A. & Alkam, M.K., 1998. "A modified tubeless solar collector partially filled with porous substrate," Renewable Energy, Elsevier, vol. 13(2), pages 165-173.
    7. Allen, S.R. & Hammond, G.P. & Harajli, H.A. & McManus, M.C. & Winnett, A.B., 2010. "Integrated appraisal of a Solar Hot Water system," Energy, Elsevier, vol. 35(3), pages 1351-1362.
    8. Al-Nimr, M.A & Kiwan, S & Al-Alwah, A, 1998. "Size optimization of conventional solar collectors," Energy, Elsevier, vol. 23(5), pages 373-378.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khargotra, Rohit & Kumar, Raj & András, Kovács & Fekete, Gusztáv & Singh, Tej, 2022. "Thermo-hydraulic characterization and design optimization of delta-shaped obstacles in solar water heating system using CRITIC-COPRAS approach," Energy, Elsevier, vol. 261(PB).
    2. Hossain, M.S. & Saidur, R. & Fayaz, H. & Rahim, N.A. & Islam, M.R. & Ahamed, J.U. & Rahman, M.M., 2011. "Review on solar water heater collector and thermal energy performance of circulating pipe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3801-3812.
    3. Kalogirou, Soteris A., 2012. "A detailed thermal model of a parabolic trough collector receiver," Energy, Elsevier, vol. 48(1), pages 298-306.
    4. Farzaneh-Gord, M. & Arabkoohsar, A. & Deymi Dasht-bayaz, M. & Farzaneh-Kord, V., 2012. "Feasibility of accompanying uncontrolled linear heater with solar system in natural gas pressure drop stations," Energy, Elsevier, vol. 41(1), pages 420-428.
    5. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2013. "Zero energy buildings and sustainable development implications – A review," Energy, Elsevier, vol. 54(C), pages 1-10.
    6. Deng, Yuechao & Wang, Wei & Zhao, Yaohua & Yao, Liang & Wang, Xinyue, 2013. "Experimental study of the performance for a novel kind of MHPA-FPC solar water heater," Applied Energy, Elsevier, vol. 112(C), pages 719-726.
    7. Zhang, Xian & Che, Hongchang, 2013. "Reducing heat loss of fluids in heavy oil wellbore using two-phase closed thermosyphon sucker rod," Energy, Elsevier, vol. 57(C), pages 352-358.
    8. Shukla, Ruchi & Sumathy, K. & Erickson, Phillip & Gong, Jiawei, 2013. "Recent advances in the solar water heating systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 173-190.
    9. Jilani, G. & Thomas, Ciby, 2015. "Thermal performance characteristics of an absorber plate fin having temperature dependent thermal conductivity and overall loss coefficient," Energy, Elsevier, vol. 86(C), pages 1-8.
    10. Silveira, Jose Luz & Tuna, Celso Eduardo & Lamas, Wendell de Queiroz, 2013. "The need of subsidy for the implementation of photovoltaic solar energy as supporting of decentralized electrical power generation in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 133-141.
    11. Raisul Islam, M. & Sumathy, K. & Ullah Khan, Samee, 2013. "Solar water heating systems and their market trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 1-25.
    12. Carnevale, E. & Lombardi, L. & Zanchi, L., 2014. "Life Cycle Assessment of solar energy systems: Comparison of photovoltaic and water thermal heater at domestic scale," Energy, Elsevier, vol. 77(C), pages 434-446.
    13. Zhou, Liqun & Wang, Yiping & Huang, Qunwu, 2019. "Parametric analysis on the performance of flat plate collector with transparent insulation material," Energy, Elsevier, vol. 174(C), pages 534-542.
    14. Jiang, X.S. & Jing, Z.X. & Li, Y.Z. & Wu, Q.H. & Tang, W.H., 2014. "Modelling and operation optimization of an integrated energy based direct district water-heating system," Energy, Elsevier, vol. 64(C), pages 375-388.
    15. Mondol, Jayanta Deb & Smyth, Mervyn & Zacharopoulos, Aggelos, 2011. "Experimental characterisation of a novel heat exchanger for a solar hot water application under indoor and outdoor conditions," Renewable Energy, Elsevier, vol. 36(6), pages 1766-1779.
    16. Qiu, Shoufeng & Ruth, Matthias & Ghosh, Sanchari, 2015. "Evacuated tube collectors: A notable driver behind the solar water heater industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 580-588.
    17. Yurtsev, Arif & Jenkins, Glenn P., 2016. "Cost-effectiveness analysis of alternative water heater systems operating with unreliable water supplies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 174-183.
    18. Sichilalu, Sam & Mathaba, Tebello & Xia, Xiaohua, 2017. "Optimal control of a wind–PV-hybrid powered heat pump water heater," Applied Energy, Elsevier, vol. 185(P2), pages 1173-1184.
    19. Sharma, Harish Kumar & Kumar, Satish & Verma, Sujit Kumar, 2022. "Comparative performance analysis of flat plate solar collector having circular &trapezoidal corrugated absorber plate designs," Energy, Elsevier, vol. 253(C).
    20. Bandaru, Rohinikumar & C., Muraleedharan & M.V., Pavan Kumar, 2019. "Modelling and dynamic simulation of solar-thermal energy conversion in an unconventional solar thermal water pump," Renewable Energy, Elsevier, vol. 134(C), pages 292-305.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:5:p:3370-3378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.