IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v36y2011i6p1766-1779.html
   My bibliography  Save this article

Experimental characterisation of a novel heat exchanger for a solar hot water application under indoor and outdoor conditions

Author

Listed:
  • Mondol, Jayanta Deb
  • Smyth, Mervyn
  • Zacharopoulos, Aggelos

Abstract

The performance of a novel heat exchanger unit (‘Solasyphon’) developed for a solar hot water system was experimentally investigated under indoor and outdoor operating conditions. The ‘Solasyphon’ can be easily integrated to an existing single-coil hot water cylinder avoiding the need for costly twin-coil solar hot water storage. A series of tests were conducted under controlled indoor and real outdoor conditions to test and compare the performance of the ‘Solasyphon’ system with a traditional twin-coil (‘coil’) system. The analysis was based upon experimental data collected under various operating conditions including different primary supply temperatures (solar simulated); heating from ambient, heating with a partially stratified storage from ambient and finally under no draw-off and standard draw-off patterns. The outdoor testing was carried out on both systems separately over Summer/Autumn conditions in Northern Ireland. The results showed that the ‘Solasyphon’ system is more effective compared to a traditional twin-coil system for a domestic application where intermittent hot water demand is predominant and under a transient solar input particularly on intermediate or poor solar days. The ‘Solasyphon’ delivered solar heated water directly to the top of the storage producing a stratified supply at a useable temperature. The twin-coil system was found to be more efficient than the ‘Solasyphon’ system under a prolonged heating period.

Suggested Citation

  • Mondol, Jayanta Deb & Smyth, Mervyn & Zacharopoulos, Aggelos, 2011. "Experimental characterisation of a novel heat exchanger for a solar hot water application under indoor and outdoor conditions," Renewable Energy, Elsevier, vol. 36(6), pages 1766-1779.
  • Handle: RePEc:eee:renene:v:36:y:2011:i:6:p:1766-1779
    DOI: 10.1016/j.renene.2010.10.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148110005021
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2010.10.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mehling, H. & Cabeza, L.F. & Hippeli, S. & Hiebler, S., 2003. "PCM-module to improve hot water heat stores with stratification," Renewable Energy, Elsevier, vol. 28(5), pages 699-711.
    2. Mondol, Jayanta Deb & Smyth, Mervyn & Zacharopoulos, Aggelos & Hyde, Trevor, 2009. "Experimental performance evaluation of a novel heat exchanger for a solar hot water storage system," Applied Energy, Elsevier, vol. 86(9), pages 1492-1505, September.
    3. Allen, S.R. & Hammond, G.P. & Harajli, H.A. & McManus, M.C. & Winnett, A.B., 2010. "Integrated appraisal of a Solar Hot Water system," Energy, Elsevier, vol. 35(3), pages 1351-1362.
    4. Knudsen, S. & Furbo, S., 2004. "Thermal stratification in vertical mantle heat-exchangers with application to solar domestic hot-water systems," Applied Energy, Elsevier, vol. 78(3), pages 257-272, July.
    5. Mazman, Muhsin & Cabeza, Luisa F. & Mehling, Harald & Nogues, Miquel & Evliya, Hunay & Paksoy, Halime Ö., 2009. "Utilization of phase change materials in solar domestic hot water systems," Renewable Energy, Elsevier, vol. 34(6), pages 1639-1643.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Naspolini, Helena F. & Rüther, Ricardo, 2012. "Assessing the technical and economic viability of low-cost domestic solar hot water systems (DSHWS) in low-income residential dwellings in Brazil," Renewable Energy, Elsevier, vol. 48(C), pages 92-99.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Majumdar, Rudrodip & Saha, Sandip K. & Singh, Suneet, 2018. "Evaluation of transient characteristics of medium temperature solar thermal systems utilizing thermal stratification," Applied Energy, Elsevier, vol. 224(C), pages 69-85.
    2. Sharif, M.K. Anuar & Al-Abidi, A.A. & Mat, S. & Sopian, K. & Ruslan, M.H. & Sulaiman, M.Y. & Rosli, M.A.M., 2015. "Review of the application of phase change material for heating and domestic hot water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 557-568.
    3. Heier, Johan & Bales, Chris & Martin, Viktoria, 2015. "Combining thermal energy storage with buildings – a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1305-1325.
    4. Abdelsalam, M.Y. & Teamah, H.M. & Lightstone, M.F. & Cotton, J.S., 2020. "Hybrid thermal energy storage with phase change materials for solar domestic hot water applications: Direct versus indirect heat exchange systems," Renewable Energy, Elsevier, vol. 147(P1), pages 77-88.
    5. Juan Zhao & Yasheng Ji & Yanping Yuan & Zhaoli Zhang & Jun Lu, 2017. "Seven Operation Modes and Simulation Models of Solar Heating System with PCM Storage Tank," Energies, MDPI, vol. 10(12), pages 1-17, December.
    6. Murray, Robynne E. & Groulx, Dominic, 2014. "Experimental study of the phase change and energy characteristics inside a cylindrical latent heat energy storage system: Part 2 simultaneous charging and discharging," Renewable Energy, Elsevier, vol. 63(C), pages 724-734.
    7. David Vérez & Emiliano Borri & Alicia Crespo & Gabriel Zsembinszki & Belal Dawoud & Luisa F. Cabeza, 2021. "Experimental Study of a Small-Size Vacuum Insulated Water Tank for Building Applications," Sustainability, MDPI, vol. 13(10), pages 1-11, May.
    8. Mawire, Ashmore, 2013. "Experimental and simulated thermal stratification evaluation of an oil storage tank subjected to heat losses during charging," Applied Energy, Elsevier, vol. 108(C), pages 459-465.
    9. Haillot, Didier & Franquet, Erwin & Gibout, Stéphane & Bédécarrats, Jean-Pierre, 2013. "Optimization of solar DHW system including PCM media," Applied Energy, Elsevier, vol. 109(C), pages 470-475.
    10. Afshan, Mahboob E. & Selvakumar, A.S & Velraj, R. & Rajaraman, R., 2020. "Effect of aspect ratio and dispersed PCM balls on the charging performance of a latent heat thermal storage unit for solar thermal applications," Renewable Energy, Elsevier, vol. 148(C), pages 876-888.
    11. Gilani, Hooman Azad & Hoseinzadeh, Siamak & Karimi, Hirou & Karimi, Ako & Hassanzadeh, Amir & Garcia, Davide Astiaso, 2021. "Performance analysis of integrated solar heat pump VRF system for the low energy building in Mediterranean island," Renewable Energy, Elsevier, vol. 174(C), pages 1006-1019.
    12. Singh, Ramkishore & Lazarus, Ian J. & Souliotis, Manolis, 2016. "Recent developments in integrated collector storage (ICS) solar water heaters: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 270-298.
    13. Majumdar, Rudrodip & Saha, Sandip K., 2019. "Effect of varying extent of PCM capsule filling on thermal stratification performance of a storage tank," Energy, Elsevier, vol. 178(C), pages 1-20.
    14. Frazzica, Andrea & Manzan, Marco & Sapienza, Alessio & Freni, Angelo & Toniato, Giuseppe & Restuccia, Giovanni, 2016. "Experimental testing of a hybrid sensible-latent heat storage system for domestic hot water applications," Applied Energy, Elsevier, vol. 183(C), pages 1157-1167.
    15. Kumar, G. Senthil & Nagarajan, D. & Chidambaram, L.A. & Kumaresan, V. & Ding, Y. & Velraj, R., 2016. "Role of PCM addition on stratification behaviour in a thermal storage tank – An experimental study," Energy, Elsevier, vol. 115(P1), pages 1168-1178.
    16. Seddegh, Saeid & Wang, Xiaolin & Henderson, Alan D. & Xing, Ziwen, 2015. "Solar domestic hot water systems using latent heat energy storage medium: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 517-533.
    17. Dutil, Yvan & Rousse, Daniel R. & Salah, Nizar Ben & Lassue, Stéphane & Zalewski, Laurent, 2011. "A review on phase-change materials: Mathematical modeling and simulations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 112-130, January.
    18. Carnevale, E. & Lombardi, L. & Zanchi, L., 2014. "Life Cycle Assessment of solar energy systems: Comparison of photovoltaic and water thermal heater at domestic scale," Energy, Elsevier, vol. 77(C), pages 434-446.
    19. Osorio, J.D. & Rivera-Alvarez, A. & Swain, M. & Ordonez, J.C., 2015. "Exergy analysis of discharging multi-tank thermal energy storage systems with constant heat extraction," Applied Energy, Elsevier, vol. 154(C), pages 333-343.
    20. M. M. Hasan & Shakhawat Hossain & M. Mofijur & Zobaidul Kabir & Irfan Anjum Badruddin & T. M. Yunus Khan & Esam Jassim, 2023. "Harnessing Solar Power: A Review of Photovoltaic Innovations, Solar Thermal Systems, and the Dawn of Energy Storage Solutions," Energies, MDPI, vol. 16(18), pages 1-30, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:36:y:2011:i:6:p:1766-1779. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.