IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v86y2015icp1-8.html
   My bibliography  Save this article

Thermal performance characteristics of an absorber plate fin having temperature dependent thermal conductivity and overall loss coefficient

Author

Listed:
  • Jilani, G.
  • Thomas, Ciby

Abstract

The prime objective of the present numerical study is to analyze the thermal performance characteristics of an absorber plate fin of a sheet and tube type solar flat plate collector of fixed collector area. Considering temperature dependent thermal conductivity and overall loss coefficient and assuming cubic temperature profile along the tube, pseudo-transient form of two-dimensional, highly nonlinear partial differential equation governing the steady state temperature distribution in the absorber plate fin is solved using Alternating Direction Implicit finite difference scheme. Keeping ambient temperature, fluid inlet temperature and number of tubes fixed, numerical results are presented and discussed for wide range of values of aspect ratio of the absorber plate, fluid outlet temperature, overall loss parameter and solar flux. Finally, it is found that there exists an upper limiting value of solar flux beyond which increase in heat transfer rate is insignificant. Further, it is concluded that fin efficiency remains independent of aspect ratio of absorber plate whereas it increases significantly with decrease in overall loss parameter and decreases slightly with increase in fluid outlet temperature.

Suggested Citation

  • Jilani, G. & Thomas, Ciby, 2015. "Thermal performance characteristics of an absorber plate fin having temperature dependent thermal conductivity and overall loss coefficient," Energy, Elsevier, vol. 86(C), pages 1-8.
  • Handle: RePEc:eee:energy:v:86:y:2015:i:c:p:1-8
    DOI: 10.1016/j.energy.2015.02.096
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215002595
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.02.096?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Al-Nimr, M.A & Kiwan, S & Al-Alwah, A, 1998. "Size optimization of conventional solar collectors," Energy, Elsevier, vol. 23(5), pages 373-378.
    2. Ghamari, D.M. & Worth, R.A., 1992. "The effect of tube spacing on the cost-effectiveness of a flat-plate solar collector," Renewable Energy, Elsevier, vol. 2(6), pages 603-606.
    3. Tiris, Ç. & Tiris, M. & Türe, I.E., 1995. "Effects of fin design on collector efficiency," Energy, Elsevier, vol. 20(10), pages 1021-1026.
    4. Jilani, G. & Thomas, Ciby, 2014. "Effect of thermo-geometric parameters on entropy generation in absorber plate fin of a solar flat plate collector," Energy, Elsevier, vol. 70(C), pages 35-42.
    5. Del Col, Davide & Padovan, Andrea & Bortolato, Matteo & Dai Prè, Marco & Zambolin, Enrico, 2013. "Thermal performance of flat plate solar collectors with sheet-and-tube and roll-bond absorbers," Energy, Elsevier, vol. 58(C), pages 258-269.
    6. Kundu, B., 2010. "Analytic method for thermal performance and optimization of an absorber plate fin having variable thermal conductivity and overall loss coefficient," Applied Energy, Elsevier, vol. 87(7), pages 2243-2255, July.
    7. Luminosu, I. & Fara, L., 2005. "Determination of the optimal operation mode of a flat solar collector by exergetic analysis and numerical simulation," Energy, Elsevier, vol. 30(5), pages 731-747.
    8. Kazeminejad, H., 2002. "Numerical analysis of two dimensional parallel flow flat-plate solar collector," Renewable Energy, Elsevier, vol. 26(2), pages 309-323.
    9. Alvarez, A. & Cabeza, O. & Muñiz, M.C. & Varela, L.M., 2010. "Experimental and numerical investigation of a flat-plate solar collector," Energy, Elsevier, vol. 35(9), pages 3707-3716.
    10. Garg, H.P. & Rani, Usha & Chandra, Ram, 1981. "Optimization of fin and tube parameters in a flat-plate collector," Energy, Elsevier, vol. 6(1), pages 83-92.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jilani, G. & Thomas, Ciby, 2014. "Effect of thermo-geometric parameters on entropy generation in absorber plate fin of a solar flat plate collector," Energy, Elsevier, vol. 70(C), pages 35-42.
    2. Wang, Dengjia & Mo, Zhelong & Liu, Yanfeng & Ren, Yuchao & Fan, Jianhua, 2022. "Thermal performance analysis of large-scale flat plate solar collectors and regional applicability in China," Energy, Elsevier, vol. 238(PC).
    3. Cruz-Peragon, F. & Palomar, J.M. & Casanova, P.J. & Dorado, M.P. & Manzano-Agugliaro, F., 2012. "Characterization of solar flat plate collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1709-1720.
    4. Dai, Rui & Tian, Ran & Zheng, Siyu & Wei, Mingshan & Shi, GuoHua, 2022. "Dynamic performance evaluation of LNG vaporization system integrated with solar-assisted heat pump," Renewable Energy, Elsevier, vol. 188(C), pages 561-572.
    5. Ayompe, L.M. & Duffy, A. & Mc Keever, M. & Conlon, M. & McCormack, S.J., 2011. "Comparative field performance study of flat plate and heat pipe evacuated tube collectors (ETCs) for domestic water heating systems in a temperate climate," Energy, Elsevier, vol. 36(5), pages 3370-3378.
    6. Verma, Sujit Kumar & Sharma, Kamal & Gupta, Naveen Kumar & Soni, Pawan & Upadhyay, Neeraj, 2020. "“Performance comparison of innovative spiral shaped solar collector design with conventional flat plate solar collector”," Energy, Elsevier, vol. 194(C).
    7. Yao, Jian & Dou, Pengbo & Zheng, Sihang & Zhao, Yao & Dai, Yanjun & Zhu, Junjie & Novakovic, Vojislav, 2022. "Co-generation ability investigation of the novel structured PVT heat pump system and its effect on the “Carbon neutral” strategy of Shanghai," Energy, Elsevier, vol. 239(PA).
    8. Filipović, P. & Dović, D. & Horvat, I. & Ranilović, B., 2023. "Evaluation of a novel polymer solar collector using numerical and experimental methods," Energy, Elsevier, vol. 284(C).
    9. Zhou, Liqun & Wang, Yiping & Huang, Qunwu, 2019. "Parametric analysis on the performance of flat plate collector with transparent insulation material," Energy, Elsevier, vol. 174(C), pages 534-542.
    10. Gunjo, Dawit Gudeta & Mahanta, Pinakeswar & Robi, Puthuveettil Sreedharan, 2017. "Exergy and energy analysis of a novel type solar collector under steady state condition: Experimental and CFD analysis," Renewable Energy, Elsevier, vol. 114(PB), pages 655-669.
    11. Yu, Y. & Yang, H. & Peng, J. & Long, E., 2019. "Performance comparisons of two flat-plate photovoltaic thermal collectors with different channel configurations," Energy, Elsevier, vol. 175(C), pages 300-308.
    12. Azzolin, Marco & Mariani, Andrea & Moro, Lorenzo & Tolotto, Andrea & Toninelli, Paolo & Del Col, Davide, 2018. "Mathematical model of a thermosyphon integrated storage solar collector," Renewable Energy, Elsevier, vol. 128(PA), pages 400-415.
    13. Murat Kunelbayev & Yedilkhan Amirgaliyev & Talgat Sundetov, 2022. "Improving the Efficiency of Environmental Temperature Control in Homes and Buildings," Energies, MDPI, vol. 15(23), pages 1-15, November.
    14. Evangelisti, Luca & De Lieto Vollaro, Roberto & Asdrubali, Francesco, 2019. "Latest advances on solar thermal collectors: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    15. Kalogirou, Soteris A., 2012. "A detailed thermal model of a parabolic trough collector receiver," Energy, Elsevier, vol. 48(1), pages 298-306.
    16. Shukla, Ruchi & Sumathy, K. & Erickson, Phillip & Gong, Jiawei, 2013. "Recent advances in the solar water heating systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 173-190.
    17. Shariah, Adnan & Shalabi, Bassam, 1997. "Optimal design for a thermosyphon solar water heater," Renewable Energy, Elsevier, vol. 11(3), pages 351-361.
    18. Alvarez, A. & Cabeza, O. & Muñiz, M.C. & Varela, L.M., 2010. "Experimental and numerical investigation of a flat-plate solar collector," Energy, Elsevier, vol. 35(9), pages 3707-3716.
    19. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2012. "A review on energy and exergy analysis of solar dying systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2812-2819.
    20. Elwekeel, Fifi N.M. & Abdala, Antar M.M., 2023. "Numerical and experimental investigation of the performance of a new circular flat plate collector," Renewable Energy, Elsevier, vol. 209(C), pages 581-590.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:86:y:2015:i:c:p:1-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.