IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v323y2025ics0360544225014276.html
   My bibliography  Save this article

Numerical study on transient critical heat flux prediction with dynamic bubble simulation under exponentially escalating heat input

Author

Listed:
  • Xu, Xinyan
  • Yu, Shuwen
  • Peng, Changhong

Abstract

This paper presents the development and validation of numerical transient critical heat flux (CHF) prediction model based on the coupling of dynamic bubble simulation by Monte Carlo (MC) method and two-dimensional heat conduction model of the substrate by finite volume method. The model aims to predict the transient CHF value, estimate the dynamic heat flux and temperature distribution and evaluate various phenomena of bubble behaviors during transient boiling heat transfer process under exponentially escalating heat power input. The dynamic bubble simulation is performed by modeling and tracking bubble nucleation, bubble growth, bubble departure and bubble coalescence procedures of individual bubbles in real time based on simplified fundamental bubble parameters including nucleation site density (NSD), bubble departure diameter, bubble growth and waiting time. The heat flux partitioning model was used to evaluate different heat fluxes based on the classification of microlayer and dry spot regions. According to the dynamic heat flux boundary due to dynamic bubble behavior and exponentially escalating heat input, the thermal conductivity model was coupled to feed back the wall temperature distribution for further updates and simulation of dynamic bubble behavior. Numerical simulation results showed good agreement with transient flow boiling experimental results with escalating periods ranging from 500 ms to 5 ms, and the results showed the trend that the transient CHF value increases with decreasing escalating period as observed in experiments. Sensitivity analysis of input bubble parameters was performed and showed that the model is more sensitive to bubble departure diameter and bubble waiting time.

Suggested Citation

  • Xu, Xinyan & Yu, Shuwen & Peng, Changhong, 2025. "Numerical study on transient critical heat flux prediction with dynamic bubble simulation under exponentially escalating heat input," Energy, Elsevier, vol. 323(C).
  • Handle: RePEc:eee:energy:v:323:y:2025:i:c:s0360544225014276
    DOI: 10.1016/j.energy.2025.135785
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225014276
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135785?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Xiaojing & Luo, Yuejian & Zhen, Cao & Guo, Rui & Cheng, Xu, 2018. "Safety research of IVR-ERVC for advanced water cooled reactor," Energy, Elsevier, vol. 156(C), pages 458-467.
    2. Jilani, G. & Thomas, Ciby, 2015. "Thermal performance characteristics of an absorber plate fin having temperature dependent thermal conductivity and overall loss coefficient," Energy, Elsevier, vol. 86(C), pages 1-8.
    3. Xu, Nian & Yu, Xinyu & Liu, Zilong & Zhang, Tianxu & Chu, Huaqiang, 2024. "Effects of chloride ion concentration on porous surfaces and boiling heat transfer performance of porous surfaces," Energy, Elsevier, vol. 294(C).
    4. Sheikholeslami, Mohsen & Ganji, Davood Domiri, 2014. "Ferrohydrodynamic and magnetohydrodynamic effects on ferrofluid flow and convective heat transfer," Energy, Elsevier, vol. 75(C), pages 400-410.
    5. Taler, Dawid & Taler, Jan & Wrona, Katarzyna, 2021. "New analytical-numerical method for modelling of tube cross-flow heat exchangers with complex flow systems," Energy, Elsevier, vol. 228(C).
    6. Jilani, G. & Thomas, Ciby, 2014. "Effect of thermo-geometric parameters on entropy generation in absorber plate fin of a solar flat plate collector," Energy, Elsevier, vol. 70(C), pages 35-42.
    7. El Fadar, Abdellah, 2015. "Thermal behavior and performance assessment of a solar adsorption cooling system with finned adsorber," Energy, Elsevier, vol. 83(C), pages 674-684.
    8. Shin, Sangwoo & Choi, Geehong & Kim, Beom Seok & Cho, Hyung Hee, 2014. "Flow boiling heat transfer on nanowire-coated surfaces with highly wetting liquid," Energy, Elsevier, vol. 76(C), pages 428-435.
    9. Niazi, Soroush & Sadaghiani, Abdolali K. & Gharib, Ghazaleh & Kaya, Veysel Ogulcan & Çelik, Süleyman & Kutlu, Özlem & Koşar, Ali, 2021. "Bio-coated surfaces with micro-roughness and micro-porosity: Next generation coatings for enhanced energy efficiency," Energy, Elsevier, vol. 222(C).
    10. Wang, Kai & Wang, Da & Liu, Xiaoxing & Cheng, Songbai & Wang, Shixian & Zhou, Wen & Miwa, Shuichiro & Okamoto, Koji, 2025. "Re-examining the input-parameters and AI strategies for Critical Heat Flux prediction," Energy, Elsevier, vol. 318(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Askalany, Ahmed A. & Ernst, Sebastian-Johannes & Hügenell, Philipp P.C. & Bart, Hans-Jörg & Henninger, Stefan K. & Alsaman, Ahmed S., 2017. "High potential of employing bentonite in adsorption cooling systems driven by low grade heat source temperatures," Energy, Elsevier, vol. 141(C), pages 782-791.
    2. Sheikholeslami, M. & Ganji, D.D., 2016. "Heat transfer enhancement in an air to water heat exchanger with discontinuous helical turbulators; experimental and numerical studies," Energy, Elsevier, vol. 116(P1), pages 341-352.
    3. Sedmak, Ivan & Urbančič, Iztok & Podlipec, Rok & Štrancar, Janez & Mortier, Michel & Golobič, Iztok, 2016. "Submicron thermal imaging of a nucleate boiling process using fluorescence microscopy," Energy, Elsevier, vol. 109(C), pages 436-445.
    4. Sheikholeslami, Mohsen & Gorji-Bandpy, Mofid & Ganji, Davood Domiri, 2015. "Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 444-469.
    5. Wang, Cong & Yang, Bianfeng & Ji, Xu & Zhang, Ren & Wu, Hailong, 2022. "Study on activated carbon/silica gel/lithium chloride composite desiccant for solid dehumidification," Energy, Elsevier, vol. 251(C).
    6. Yang, Sheng & Yang, Siyu & Wang, Yifan & Qian, Yu, 2017. "Low grade waste heat recovery with a novel cascade absorption heat transformer," Energy, Elsevier, vol. 130(C), pages 461-472.
    7. Garoosi, Faroogh & Hoseininejad, Faraz & Rashidi, Mohammad Mehdi, 2016. "Numerical study of natural convection heat transfer in a heat exchanger filled with nanofluids," Energy, Elsevier, vol. 109(C), pages 664-678.
    8. Skouri, Safa & Ben Haj Ali, Abdessalem & Bouadila, Salwa & Ben Nasrallah, Sassi, 2015. "Optical qualification of a solar parabolic concentrator using photogrammetry technique," Energy, Elsevier, vol. 90(P1), pages 403-416.
    9. Tian, Ye & Zhang, Chao & Huang, Haifeng & Shen, Jiale & Zhou, Xiong & Hu, Lian & Ma, Wensheng, 2024. "Experimental research on chemisorption energy storage performance for industrial waste heat recovery and conversion," Energy, Elsevier, vol. 309(C).
    10. Shamshirgaran, Seyed Reza & Khalaji Assadi, Morteza & Badescu, Viorel & Al-Kayiem, Hussain H., 2018. "Upper limits for the work extraction by nanofluid-filled selective flat-plate solar collectors," Energy, Elsevier, vol. 160(C), pages 875-885.
    11. Abdollahipour, Armin & Sayyaadi, Hoseyn, 2022. "A novel electrochemical refrigeration system based on the combined proton exchange membrane fuel cell-electrolyzer," Applied Energy, Elsevier, vol. 316(C).
    12. Sheikholeslami, M. & Vajravelu, K., 2017. "Nanofluid flow and heat transfer in a cavity with variable magnetic field," Applied Mathematics and Computation, Elsevier, vol. 298(C), pages 272-282.
    13. Shahsavar, Amin & Jha, Prabhakar, 2024. "Experimentally exploring the synergy of rotating twisted tape turbulators and hybrid nanofluids for enhanced photovoltaic thermal system performance," Energy, Elsevier, vol. 313(C).
    14. Fei, Yu & Xiao, Qingtai & Xu, Jianxin & Pan, Jianxin & Wang, Shibo & Wang, Hua & Huang, Junwei, 2015. "A novel approach for measuring bubbles uniformity and mixing efficiency in a direct contact heat exchanger," Energy, Elsevier, vol. 93(P2), pages 2313-2320.
    15. Izadi, Mohsen & Mohebbi, Rasul & Sajjadi, Hasan & Delouei, Amin Amiri, 2019. "LTNE modeling of Magneto-Ferro natural convection inside a porous enclosure exposed to nonuniform magnetic field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    16. Shahsavar, Amin & Eisapour, Mehdi & Talebizadehsardari, Pouyan, 2020. "Experimental evaluation of novel photovoltaic/thermal systems using serpentine cooling tubes with different cross-sections of circular, triangular and rectangular," Energy, Elsevier, vol. 208(C).
    17. Wang, Yiping & Fu, Hailing & Huang, Qunwu & Cui, Yong & Sun, Yong & Jiang, Lihong, 2015. "Experimental study of direct contact vaporization heat transfer on n-pentane-water flowing interface," Energy, Elsevier, vol. 93(P1), pages 854-863.
    18. Achkari, O. & El Fadar, A. & Amlal, I. & Haddi, A. & Hamidoun, M. & Hamdoune, S., 2021. "A new sun-tracking approach for energy saving," Renewable Energy, Elsevier, vol. 169(C), pages 820-835.
    19. Shoukat A. Khan & Muataz A. Atieh & Muammer Koç, 2018. "Micro-Nano Scale Surface Coating for Nucleate Boiling Heat Transfer: A Critical Review," Energies, MDPI, vol. 11(11), pages 1-30, November.
    20. Pesaran, Alireza & Lee, Hoseong & Hwang, Yunho & Radermacher, Reinhard & Chun, Ho-Hwan, 2016. "Review article: Numerical simulation of adsorption heat pumps," Energy, Elsevier, vol. 100(C), pages 310-320.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:323:y:2025:i:c:s0360544225014276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.