IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v75y2014icp400-410.html
   My bibliography  Save this article

Ferrohydrodynamic and magnetohydrodynamic effects on ferrofluid flow and convective heat transfer

Author

Listed:
  • Sheikholeslami, Mohsen
  • Ganji, Davood Domiri

Abstract

In this paper, influence of an external magnetic field on ferrofluid flow and heat transfer in a semi annulus enclosure with sinusoidal hot wall is investigated. The governing equations which are derived by considering the both effects of FHD (Ferrohydrodynamic) and MHD (Magnetohydrodynamic) are solved via CVFEM (Control Volume based Finite Element Method). The effects of Rayleigh number, nanoparticle volume fraction, Magnetic number arising from FHD and Hartmann number arising from MHD on the flow and heat transfer characteristics have been examined. Results show that Nusselt number increases with augment of Rayleigh number and nanoparticle volume fraction but it decreases with increase of Hartmann number. Magnetic number has different effect on Nusselt number corresponding to Rayleigh number. Also it can be found that for low Rayleigh number, enhancement in heat transfer is an increasing function of Hartmann number and decreasing function of Magnetic number while opposite trend is observed for high Rayleigh number.

Suggested Citation

  • Sheikholeslami, Mohsen & Ganji, Davood Domiri, 2014. "Ferrohydrodynamic and magnetohydrodynamic effects on ferrofluid flow and convective heat transfer," Energy, Elsevier, vol. 75(C), pages 400-410.
  • Handle: RePEc:eee:energy:v:75:y:2014:i:c:p:400-410
    DOI: 10.1016/j.energy.2014.07.089
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214009281
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.07.089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ting, Tiew Wei & Hung, Yew Mun & Guo, Ningqun, 2014. "Entropy generation of nanofluid flow with streamwise conduction in microchannels," Energy, Elsevier, vol. 64(C), pages 979-990.
    2. Ibáñez, Guillermo & Cuevas, Sergio, 2010. "Entropy generation minimization of a MHD (magnetohydrodynamic) flow in a microchannel," Energy, Elsevier, vol. 35(10), pages 4149-4155.
    3. Saidi, M.H. & Montazeri, A., 2007. "Second law analysis of a magnetohydrodynamic plasma generator," Energy, Elsevier, vol. 32(9), pages 1603-1616.
    4. Mahian, Omid & Mahmud, Shohel & Heris, Saeed Zeinali, 2012. "Analysis of entropy generation between co-rotating cylinders using nanofluids," Energy, Elsevier, vol. 44(1), pages 438-446.
    5. Rashidi, M.M. & Ali, M. & Freidoonimehr, N. & Nazari, F., 2013. "Parametric analysis and optimization of entropy generation in unsteady MHD flow over a stretching rotating disk using artificial neural network and particle swarm optimization algorithm," Energy, Elsevier, vol. 55(C), pages 497-510.
    6. Sheikholeslami, M. & Gorji-Bandpy, M. & Ganji, D.D., 2013. "Numerical investigation of MHD effects on Al2O3–water nanofluid flow and heat transfer in a semi-annulus enclosure using LBM," Energy, Elsevier, vol. 60(C), pages 501-510.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Izadi, Mohsen & Mohebbi, Rasul & Sajjadi, Hasan & Delouei, Amin Amiri, 2019. "LTNE modeling of Magneto-Ferro natural convection inside a porous enclosure exposed to nonuniform magnetic field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    2. Shahsavar, Amin & Eisapour, Mehdi & Talebizadehsardari, Pouyan, 2020. "Experimental evaluation of novel photovoltaic/thermal systems using serpentine cooling tubes with different cross-sections of circular, triangular and rectangular," Energy, Elsevier, vol. 208(C).
    3. Ranjit, N.K. & Shit, G.C., 2017. "Joule heating effects on electromagnetohydrodynamic flow through a peristaltically induced micro-channel with different zeta potential and wall slip," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 458-476.
    4. Fatih Selimefendigil & Hakan F. Oztop & Mikhail A. Sheremet & Nidal Abu-Hamdeh, 2019. "Forced Convection of Fe 3 O 4 -Water Nanofluid in a Bifurcating Channel under the Effect of Variable Magnetic Field," Energies, MDPI, vol. 12(4), pages 1-16, February.
    5. Garoosi, Faroogh & Hoseininejad, Faraz & Rashidi, Mohammad Mehdi, 2016. "Numerical study of natural convection heat transfer in a heat exchanger filled with nanofluids," Energy, Elsevier, vol. 109(C), pages 664-678.
    6. Ali J. Chamkha & Fatih Selimefendigil & Hakan F. Oztop, 2020. "Pulsating Flow of CNT–Water Nanofluid Mixed Convection in a Vented Trapezoidal Cavity with an Inner Conductive T-Shaped Object and Magnetic Field Effects," Energies, MDPI, vol. 13(4), pages 1-30, February.
    7. Zheng, Bin & Sun, Peng & Liu, Yongqi & Zhao, Qiang, 2018. "Heat transfer of calcined petroleum coke and heat exchange tube for calcined petroleum coke waste heat recovery," Energy, Elsevier, vol. 155(C), pages 56-65.
    8. Sheikholeslami, M. & Vajravelu, K., 2017. "Nanofluid flow and heat transfer in a cavity with variable magnetic field," Applied Mathematics and Computation, Elsevier, vol. 298(C), pages 272-282.
    9. Sheikholeslami, M. & Ganji, D.D., 2016. "Heat transfer enhancement in an air to water heat exchanger with discontinuous helical turbulators; experimental and numerical studies," Energy, Elsevier, vol. 116(P1), pages 341-352.
    10. Yedhu Krishnan, R. & Manikandan, S. & Suganthi, K.S. & Leela Vinodhan, V. & Rajan, K.S., 2016. "Novel copper – Propylene glycol nanofluid as efficient thermic fluid for potential application in discharge cycle of thermal energy storage," Energy, Elsevier, vol. 107(C), pages 482-492.
    11. Zhang, Kaiyu & Wang, Yibai & Tang, Haibin & Li, Yong & Wang, Baojun & York, Thomas M. & Yang, Lijun, 2020. "Two-dimensional analytical investigation into energy conversion and efficiency maximization of magnetohydrodynamic swirling flow actuators," Energy, Elsevier, vol. 209(C).
    12. Sylwia Wciślik, 2020. "Efficient Stabilization of Mono and Hybrid Nanofluids," Energies, MDPI, vol. 13(15), pages 1-26, July.
    13. Ren, Yaqian & Kong, Yanlong & Pang, Zhonghe & Wang, Jiyang, 2023. "A comprehensive review of tracer tests in enhanced geothermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    14. Zhao, Ruijie & Dou, Xiaohui & Huang, Jun & Zhang, Desheng & Xia, Di & Zhang, Xing, 2022. "Mechanisms of energy conversion in induction magnetohydrodynamic pumps for transporting conducting liquids," Energy, Elsevier, vol. 244(PB).
    15. Sheikholeslami, Mohsen & Bandpy, Mofid Gorji & Ashorynejad, Hamid Reza, 2015. "Lattice Boltzmann Method for simulation of magnetic field effect on hydrothermal behavior of nanofluid in a cubic cavity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 58-70.
    16. Sheikholeslami, Mohsen & Ganji, Davood Domiri, 2015. "Entropy generation of nanofluid in presence of magnetic field using Lattice Boltzmann Method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 273-286.
    17. Sheikholeslami, Mohsen & Gorji-Bandpy, Mofid & Ganji, Davood Domiri, 2015. "Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 444-469.
    18. Manikandan, S. & Rajan, K.S., 2015. "MgO-Therminol 55 nanofluids for efficient energy management: Analysis of transient heat transfer performance," Energy, Elsevier, vol. 88(C), pages 408-416.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sheikholeslami, M. & Gorji-Bandpy, M. & Ganji, D.D., 2013. "Numerical investigation of MHD effects on Al2O3–water nanofluid flow and heat transfer in a semi-annulus enclosure using LBM," Energy, Elsevier, vol. 60(C), pages 501-510.
    2. Ibáñez, Guillermo & López, Aracely & Pantoja, Joel & Moreira, Joel & Reyes, Juan A., 2013. "Optimum slip flow based on the minimization of entropy generation in parallel plate microchannels," Energy, Elsevier, vol. 50(C), pages 143-149.
    3. Sciacovelli, A. & Verda, V. & Sciubba, E., 2015. "Entropy generation analysis as a design tool—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1167-1181.
    4. Manikandan, S. & Rajan, K.S., 2015. "MgO-Therminol 55 nanofluids for efficient energy management: Analysis of transient heat transfer performance," Energy, Elsevier, vol. 88(C), pages 408-416.
    5. Wang, Jin & Yu, Kai & Ye, Mingzheng & Wang, Enyu & Wang, Wei & Sundén, Bengt, 2022. "Effects of pin fins and vortex generators on thermal performance in a microchannel with Al2O3 nanofluids," Energy, Elsevier, vol. 239(PE).
    6. Rashidi, M.M. & Ali, M. & Freidoonimehr, N. & Nazari, F., 2013. "Parametric analysis and optimization of entropy generation in unsteady MHD flow over a stretching rotating disk using artificial neural network and particle swarm optimization algorithm," Energy, Elsevier, vol. 55(C), pages 497-510.
    7. Torabi, Mohsen & Karimi, Nader & Zhang, Kaili, 2015. "Heat transfer and second law analyses of forced convection in a channel partially filled by porous media and featuring internal heat sources," Energy, Elsevier, vol. 93(P1), pages 106-127.
    8. Shamshiri, Mehdi & Ashrafizaadeh, Mahmud & Shirani, Ebrahim, 2012. "Effects of rarefaction, viscous dissipation and rotation mode on the first and second law analyses of rarefied gaseous slip flows confined between a rotating shaft and its concentric housing," Energy, Elsevier, vol. 37(1), pages 359-370.
    9. Muhammad Ashraf & Anwar Khan & Amir Abbas & Abid Hussanan & Kaouther Ghachem & Chemseddine Maatki & Lioua Kolsi, 2023. "Finite Difference Method to Evaluate the Characteristics of Optically Dense Gray Nanofluid Heat Transfer around the Surface of a Sphere and in the Plume Region," Mathematics, MDPI, vol. 11(4), pages 1-25, February.
    10. Firoozzadeh, Mohammad & Shiravi, Amir Hossein & Lotfi, Marzieh & Aidarova, Saule & Sharipova, Altynay, 2021. "Optimum concentration of carbon black aqueous nanofluid as coolant of photovoltaic modules: A case study," Energy, Elsevier, vol. 225(C).
    11. Dalir, Nemat & Dehsara, Mohammad & Nourazar, S. Salman, 2015. "Entropy analysis for magnetohydrodynamic flow and heat transfer of a Jeffrey nanofluid over a stretching sheet," Energy, Elsevier, vol. 79(C), pages 351-362.
    12. Bahiraei, Mehdi & Hangi, Morteza, 2014. "Numerical simulation of nanofluid application in a C-shaped chaotic channel: A potential approach for energy efficiency improvement," Energy, Elsevier, vol. 74(C), pages 863-870.
    13. Sheikholeslami, Mohsen & Ganji, Davood Domiri, 2015. "Entropy generation of nanofluid in presence of magnetic field using Lattice Boltzmann Method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 273-286.
    14. Matin, Meisam Habibi & Khan, Waqar Ahmed, 2013. "Entropy generation analysis of heat and mass transfer in mixed electrokinetically and pressure driven flow through a slit microchannel," Energy, Elsevier, vol. 56(C), pages 207-217.
    15. Khalili, Sufia & Jafarian Dehkordi, Ali & Giahi, Mohammad Hossein, 2015. "Investigating the effect of channel angle of a subsonic MHD (Magneto-Hydro-Dynamic) generator on optimum efficiency of a triple combined cycle," Energy, Elsevier, vol. 85(C), pages 543-555.
    16. Sheikholeslami, Mohsen & Gorji-Bandpy, Mofid & Ganji, Davood Domiri, 2015. "Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 444-469.
    17. Frikha, Sobhi & Driss, Zied & Hagui, Mohamed Aymen, 2015. "Computational study of the diffuser angle effect in the design of a waste heat recovery system for oil field cabins," Energy, Elsevier, vol. 84(C), pages 219-238.
    18. Ibáñez, Guillermo & Cuevas, Sergio, 2010. "Entropy generation minimization of a MHD (magnetohydrodynamic) flow in a microchannel," Energy, Elsevier, vol. 35(10), pages 4149-4155.
    19. Torabi, Mohsen & Zhang, Kaili & Yang, Guangcheng & Wang, Jun & Wu, Peng, 2015. "Heat transfer and entropy generation analyses in a channel partially filled with porous media using local thermal non-equilibrium model," Energy, Elsevier, vol. 82(C), pages 922-938.
    20. Anand, Vishal, 2015. "Entropy generation analysis of laminar flow of a nanofluid in a circular tube immersed in an isothermal external fluid," Energy, Elsevier, vol. 93(P1), pages 154-164.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:75:y:2014:i:c:p:400-410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.