IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v109y2016icp664-678.html
   My bibliography  Save this article

Numerical study of natural convection heat transfer in a heat exchanger filled with nanofluids

Author

Listed:
  • Garoosi, Faroogh
  • Hoseininejad, Faraz
  • Rashidi, Mohammad Mehdi

Abstract

Natural convection of nanofluids around several pairs of hot and cold cylinders in an adiabatic enclosure is investigated numerically. Hot and cold cylinders are maintained at the different constant temperatures (Th > Tc) while the walls of the enclosure are thermally insulated. A parametric study is undertaken to explore the effects of the pertinent parameters, such as; Rayleigh number, size and type of the nanoparticles, shape of the enclosure, orientation and number of the hot and cold cylinders on the fluid flow and heat transfer characteristic. The simulations show that at low Ra, by changing shape of the enclosure from square to triangular one, the heat transfer rate decreases. It is also found that at each Ra, there is an optimum volume fraction of nanoparticles (ϕopt) where the heat transfer rate within the enclosure has a maximum value. Moreover, the results of this study showed by altering orientation of the hot and cold cylinders from horizontal to vertical mode, the heat transfer rate enhances. Finally, the results indicated that, by decreasing the size of the nanoparticles, the heat transfer rate and optimal particle loading (ϕopt) enhances.

Suggested Citation

  • Garoosi, Faroogh & Hoseininejad, Faraz & Rashidi, Mohammad Mehdi, 2016. "Numerical study of natural convection heat transfer in a heat exchanger filled with nanofluids," Energy, Elsevier, vol. 109(C), pages 664-678.
  • Handle: RePEc:eee:energy:v:109:y:2016:i:c:p:664-678
    DOI: 10.1016/j.energy.2016.05.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216306612
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.05.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ali, Hafiz Muhammad & Ali, Hassan & Liaquat, Hassan & Bin Maqsood, Hafiz Talha & Nadir, Malik Ahmed, 2015. "Experimental investigation of convective heat transfer augmentation for car radiator using ZnO–water nanofluids," Energy, Elsevier, vol. 84(C), pages 317-324.
    2. Siavashi, Majid & Talesh Bahrami, Hamid Reza & Saffari, Hamid, 2015. "Numerical investigation of flow characteristics, heat transfer and entropy generation of nanofluid flow inside an annular pipe partially or completely filled with porous media using two-phase mixture ," Energy, Elsevier, vol. 93(P2), pages 2451-2466.
    3. Bianco, Vincenzo & Manca, Oronzio & Nardini, Sergio, 2014. "Performance analysis of turbulent convection heat transfer of Al2O3 water-nanofluid in circular tubes at constant wall temperature," Energy, Elsevier, vol. 77(C), pages 403-413.
    4. Solangi, K.H. & Kazi, S.N. & Luhur, M.R. & Badarudin, A. & Amiri, A. & Sadri, Rad & Zubir, M.N.M. & Gharehkhani, Samira & Teng, K.H., 2015. "A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids," Energy, Elsevier, vol. 89(C), pages 1065-1086.
    5. Sheikholeslami, Mohsen & Ganji, Davood Domiri, 2014. "Ferrohydrodynamic and magnetohydrodynamic effects on ferrofluid flow and convective heat transfer," Energy, Elsevier, vol. 75(C), pages 400-410.
    6. Bahiraei, Mehdi & Hangi, Morteza & Saeedan, Mahdi, 2015. "A novel application for energy efficiency improvement using nanofluid in shell and tube heat exchanger equipped with helical baffles," Energy, Elsevier, vol. 93(P2), pages 2229-2240.
    7. Saidi, Majid & Karimi, Gholamreza, 2014. "Free convection cooling in modified L-shape enclosures using copper–water nanofluid," Energy, Elsevier, vol. 70(C), pages 251-271.
    8. Bahiraei, Mehdi & Hangi, Morteza, 2014. "Numerical simulation of nanofluid application in a C-shaped chaotic channel: A potential approach for energy efficiency improvement," Energy, Elsevier, vol. 74(C), pages 863-870.
    9. Bhardwaj, Saurabh & Dalal, Amaresh & Pati, Sukumar, 2015. "Influence of wavy wall and non-uniform heating on natural convection heat transfer and entropy generation inside porous complex enclosure," Energy, Elsevier, vol. 79(C), pages 467-481.
    10. Vanaki, Sh.M. & Ganesan, P. & Mohammed, H.A., 2016. "Numerical study of convective heat transfer of nanofluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1212-1239.
    11. Ebrahimian, M. & Ansarifar, G.R., 2016. "Investigation of the nano fluid effects on heat transfer characteristics in nuclear reactors with dual cooled annular fuel using CFD (Computational Fluid Dynamics) modeling," Energy, Elsevier, vol. 98(C), pages 1-14.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumar, Anil & Rao, Pentyala Srinivasa, 2023. "Numerical study of periodically heated wall effect on natural convection in an enclosure," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 211(C), pages 118-133.
    2. Mikhailenko, Stepan A. & Sheremet, Mikhail A. & Pop, Ioan, 2020. "Natural convection combined with surface radiation in a rotating cavity with an element of variable volumetric heat generation," Energy, Elsevier, vol. 210(C).
    3. Zheng, Bin & Sun, Peng & Liu, Yongqi & Zhao, Qiang, 2018. "Heat transfer of calcined petroleum coke and heat exchange tube for calcined petroleum coke waste heat recovery," Energy, Elsevier, vol. 155(C), pages 56-65.
    4. Aprea, C. & Greco, A. & Maiorino, A. & Masselli, C., 2020. "The use of barocaloric effect for energy saving in a domestic refrigerator with ethylene-glycol based nanofluids: A numerical analysis and a comparison with a vapor compression cooler," Energy, Elsevier, vol. 190(C).
    5. Zhang, H. & Yang, H. & Chen, H.J. & Du, X. & Wen, D. & Wu, H., 2017. "Photothermal conversion characteristics of gold nanoparticles under different filter conditions," Energy, Elsevier, vol. 141(C), pages 32-39.
    6. Sardar Bilal & Imtiaz Ali Shah & Kaouther Ghachem & Abdelkarim Aydi & Lioua Kolsi, 2023. "Heat Transfer Enhancement of MHD Natural Convection in a Star-Shaped Enclosure, Using Heated Baffle and MWCNT–Water Nanofluid," Mathematics, MDPI, vol. 11(8), pages 1-18, April.
    7. Bohacek, Jan & Raudensky, Miroslav & Astrouski, Ilya & Karimi-Sibaki, Ebrahim, 2021. "An optimal design for hollow fiber heat exchanger: A combined numerical and experimental investigation," Energy, Elsevier, vol. 229(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mamourian, Mojtaba & Milani Shirvan, Kamel & Mirzakhanlari, Soroush, 2016. "Two phase simulation and sensitivity analysis of effective parameters on turbulent combined heat transfer and pressure drop in a solar heat exchanger filled with nanofluid by Response Surface Methodol," Energy, Elsevier, vol. 109(C), pages 49-61.
    2. Zhao, Ningbo & Li, Shuying & Yang, Jialong, 2016. "A review on nanofluids: Data-driven modeling of thermalphysical properties and the application in automotive radiator," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 596-616.
    3. Rashidi, S. & Bovand, M. & Abolfazli Esfahani, J., 2015. "Structural optimization of nanofluid flow around an equilateral triangular obstacle," Energy, Elsevier, vol. 88(C), pages 385-398.
    4. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    5. Solangi, K.H. & Kazi, S.N. & Luhur, M.R. & Badarudin, A. & Amiri, A. & Sadri, Rad & Zubir, M.N.M. & Gharehkhani, Samira & Teng, K.H., 2015. "A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids," Energy, Elsevier, vol. 89(C), pages 1065-1086.
    6. Manikandan, S. & Rajan, K.S., 2016. "Sand-propylene glycol-water nanofluids for improved solar energy collection," Energy, Elsevier, vol. 113(C), pages 917-929.
    7. Manikandan, S. & Rajan, K.S., 2015. "MgO-Therminol 55 nanofluids for efficient energy management: Analysis of transient heat transfer performance," Energy, Elsevier, vol. 88(C), pages 408-416.
    8. Shahsavar, Amin & Eisapour, Mehdi & Talebizadehsardari, Pouyan, 2020. "Experimental evaluation of novel photovoltaic/thermal systems using serpentine cooling tubes with different cross-sections of circular, triangular and rectangular," Energy, Elsevier, vol. 208(C).
    9. Raja, M. & Vijayan, R. & Dineshkumar, P. & Venkatesan, M., 2016. "Review on nanofluids characterization, heat transfer characteristics and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 163-173.
    10. Gupta, Munish & Singh, Vinay & Kumar, Rajesh & Said, Z., 2017. "A review on thermophysical properties of nanofluids and heat transfer applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 638-670.
    11. Shoukat A. Khan & Muataz A. Atieh & Muammer Koç, 2018. "Micro-Nano Scale Surface Coating for Nucleate Boiling Heat Transfer: A Critical Review," Energies, MDPI, vol. 11(11), pages 1-30, November.
    12. Mikhailenko, Stepan A. & Sheremet, Mikhail A. & Pop, Ioan, 2020. "Natural convection combined with surface radiation in a rotating cavity with an element of variable volumetric heat generation," Energy, Elsevier, vol. 210(C).
    13. Zheng, Bin & Sun, Peng & Liu, Yongqi & Zhao, Qiang, 2018. "Heat transfer of calcined petroleum coke and heat exchange tube for calcined petroleum coke waste heat recovery," Energy, Elsevier, vol. 155(C), pages 56-65.
    14. Iacobazzi, Fabrizio & Milanese, Marco & Colangelo, Gianpiero & Lomascolo, Mauro & de Risi, Arturo, 2016. "An explanation of the Al2O3 nanofluid thermal conductivity based on the phonon theory of liquid," Energy, Elsevier, vol. 116(P1), pages 786-794.
    15. Hajmohammadi, M.R. & Haji Molla Ali Tork, M.H., 2019. "Effects of the magnetic field on the cylindrical Couette flow and heat transfer of a nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 234-245.
    16. Shah, Tayyab Raza & Ali, Hafiz Muhammad & Zhou, Chao & Babar, Hamza & Janjua, Muhammad Mansoor & Doranehgard, Mohammad Hossein & Hussain, Abid & Sajjad, Uzair & Wang, Chi-Chuan & Sultan, Muhamad, 2022. "Potential evaluation of water-based ferric oxide (Fe2O3-water) nanocoolant: An experimental study," Energy, Elsevier, vol. 246(C).
    17. Mukkamala, Yagnavalkya, 2017. "Contemporary trends in thermo-hydraulic testing and modeling of automotive radiators deploying nano-coolants and aerodynamically efficient air-side fins," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1208-1229.
    18. Jani, Hardik K. & Modi, Kalpesh V., 2018. "A review on numerous means of enhancing heat transfer rate in solar-thermal based desalination devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 302-317.
    19. Yang, Jian-Feng & Lin, Yuan-Sheng & Ke, Han-Bing & Zeng, Min & Wang, Qiu-Wang, 2016. "Investigation on combined multiple shell-pass shell-and-tube heat exchanger with continuous helical baffles," Energy, Elsevier, vol. 115(P3), pages 1572-1579.
    20. Sheikholeslami, M. & Ganji, D.D., 2016. "Heat transfer enhancement in an air to water heat exchanger with discontinuous helical turbulators; experimental and numerical studies," Energy, Elsevier, vol. 116(P1), pages 341-352.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:109:y:2016:i:c:p:664-678. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.