IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v169y2021icp820-835.html
   My bibliography  Save this article

A new sun-tracking approach for energy saving

Author

Listed:
  • Achkari, O.
  • El Fadar, A.
  • Amlal, I.
  • Haddi, A.
  • Hamidoun, M.
  • Hamdoune, S.

Abstract

The aim of this paper is to introduce a novel solar tracking alternative whose principle is based on continuous tests comparing the produced thermal energy corresponding to the new apparent sun position with the electrical energy consumption required to drive the solar collector to the new position. Accordingly, the sun-tracking occurs whenever the net energy gain, the gap between thermal production and electrical consumption, is higher than an optimal threshold which reflects the required limits from which the sun-tracking process should begin. The proposed approach was investigated through modeling and optimization. Furthermore, to check the accuracy of the theoretical model, a series of comparisons were also performed, which have shown a reasonable agreement between the simulation results and the available data in the literature.

Suggested Citation

  • Achkari, O. & El Fadar, A. & Amlal, I. & Haddi, A. & Hamidoun, M. & Hamdoune, S., 2021. "A new sun-tracking approach for energy saving," Renewable Energy, Elsevier, vol. 169(C), pages 820-835.
  • Handle: RePEc:eee:renene:v:169:y:2021:i:c:p:820-835
    DOI: 10.1016/j.renene.2020.12.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120319650
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.12.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jaramillo, O.A. & Venegas-Reyes, E. & Aguilar, J.O. & Castrejón-García, R. & Sosa-Montemayor, F., 2013. "Parabolic trough concentrators for low enthalpy processes," Renewable Energy, Elsevier, vol. 60(C), pages 529-539.
    2. El Fadar, Abdellah, 2016. "Novel process for performance enhancement of a solar continuous adsorption cooling system," Energy, Elsevier, vol. 114(C), pages 10-23.
    3. Li, Longlong & Li, Huairui & Xu, Qian & Huang, Weidong, 2015. "Performance analysis of Azimuth Tracking Fixed Mirror Solar Concentrator," Renewable Energy, Elsevier, vol. 75(C), pages 722-732.
    4. Singh, Rajesh & Kumar, Suresh & Gehlot, Anita & Pachauri, Rupendra, 2018. "An imperative role of sun trackers in photovoltaic technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3263-3278.
    5. Salgado-Conrado, Lizbeth, 2018. "A review on sun position sensors used in solar applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2128-2146.
    6. El Fadar, Abdellah, 2015. "Thermal behavior and performance assessment of a solar adsorption cooling system with finned adsorber," Energy, Elsevier, vol. 83(C), pages 674-684.
    7. Nation, Deju D. & Heggs, Peter J. & Dixon-Hardy, Darron W., 2017. "Modelling and simulation of a novel Electrical Energy Storage (EES) Receiver for Solar Parabolic Trough Collector (PTC) power plants," Applied Energy, Elsevier, vol. 195(C), pages 950-973.
    8. El Mghouchi, Y. & El Bouardi, A. & Choulli, Z. & Ajzoul, T., 2016. "Models for obtaining the daily direct, diffuse and global solar radiations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 87-99.
    9. Yılmaz, İbrahim Halil & Mwesigye, Aggrey, 2018. "Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review," Applied Energy, Elsevier, vol. 225(C), pages 135-174.
    10. El Fadar, A. & Mimet, A. & Pérez-García, M., 2009. "Study of an adsorption refrigeration system powered by parabolic trough collector and coupled with a heat pipe," Renewable Energy, Elsevier, vol. 34(10), pages 2271-2279.
    11. Hachicha, Ahmed Amine & Said, Zafar & Rahman, S.M.A. & Al-Sarairah, Eman, 2020. "On the thermal and thermodynamic analysis of parabolic trough collector technology using industrial-grade MWCNT based nanofluid," Renewable Energy, Elsevier, vol. 161(C), pages 1303-1317.
    12. Nsengiyumva, Walter & Chen, Shi Guo & Hu, Lihua & Chen, Xueyong, 2018. "Recent advancements and challenges in Solar Tracking Systems (STS): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 250-279.
    13. Tagle-Salazar, Pablo D. & Nigam, K.D.P. & Rivera-Solorio, Carlos I., 2018. "Heat transfer model for thermal performance analysis of parabolic trough solar collectors using nanofluids," Renewable Energy, Elsevier, vol. 125(C), pages 334-343.
    14. Mousazadeh, Hossein & Keyhani, Alireza & Javadi, Arzhang & Mobli, Hossein & Abrinia, Karen & Sharifi, Ahmad, 2009. "A review of principle and sun-tracking methods for maximizing solar systems output," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1800-1818, October.
    15. Badran, Omar & Eck, Markus, 2006. "The application of parabolic trough technology under Jordanian climate," Renewable Energy, Elsevier, vol. 31(6), pages 791-802.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Almorox, Javier & Voyant, Cyril & Bailek, Nadjem & Kuriqi, Alban & Arnaldo, J.A., 2021. "Total solar irradiance's effect on the performance of empirical models for estimating global solar radiation: An empirical-based review," Energy, Elsevier, vol. 236(C).
    2. Xu, Rongji & He, Zhencheng & Yang, Liwei & Xu, Shuhui & Wang, Ruixiang & Wang, Huasheng, 2022. "Concentration performance of solar collector integrated compound parabolic concentrator and flat microchannel tube with tracking system," Renewable Energy, Elsevier, vol. 200(C), pages 809-820.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Pirayawaraporn, Alongkorn & Sappaniran, Sahapol & Nooraksa, Sarawin & Prommai, Chanon & Chindakham, Nachaya & Jamroen, Chaowanan, 2023. "Innovative sensorless dual-axis solar tracking system using particle filter," Applied Energy, Elsevier, vol. 338(C).
    3. Shitao Wang & Yi Shen & Junbing Zhou & Caixia Li & Lijun Ma, 2022. "Efficiency Enhancement of Tilted Bifacial Photovoltaic Modules with Horizontal Single-Axis Tracker—The Bifacial Companion Method," Energies, MDPI, vol. 15(4), pages 1-22, February.
    4. Nurzhigit Kuttybay & Ahmet Saymbetov & Saad Mekhilef & Madiyar Nurgaliyev & Didar Tukymbekov & Gulbakhar Dosymbetova & Aibolat Meiirkhanov & Yeldos Svanbayev, 2020. "Optimized Single-Axis Schedule Solar Tracker in Different Weather Conditions," Energies, MDPI, vol. 13(19), pages 1-18, October.
    5. Jamroen, Chaowanan & Fongkerd, Chanon & Krongpha, Wipa & Komkum, Preecha & Pirayawaraporn, Alongkorn & Chindakham, Nachaya, 2021. "A novel UV sensor-based dual-axis solar tracking system: Implementation and performance analysis," Applied Energy, Elsevier, vol. 299(C).
    6. Askalany, Ahmed A. & Ernst, Sebastian-Johannes & Hügenell, Philipp P.C. & Bart, Hans-Jörg & Henninger, Stefan K. & Alsaman, Ahmed S., 2017. "High potential of employing bentonite in adsorption cooling systems driven by low grade heat source temperatures," Energy, Elsevier, vol. 141(C), pages 782-791.
    7. Tibúrcio, B.D. & Liang, D. & Almeida, J. & Garcia, D. & Catela, M. & Costa, H. & Vistas, C.R., 2022. "Tracking error compensation capacity measurement of a dual-rod side-pumping solar laser," Renewable Energy, Elsevier, vol. 195(C), pages 1253-1261.
    8. Moudakkar, Touria & El Hallaoui, Z. & Vaudreuil, S. & Bounahmidi, T., 2019. "Modeling and performance analysis of a PTC for industrial phosphate flash drying," Energy, Elsevier, vol. 166(C), pages 1134-1148.
    9. Majedul Islam & Prasad Yarlagadda & Azharul Karim, 2018. "Effect of the Orientation Schemes of the Energy Collection Element on the Optical Performance of a Parabolic Trough Concentrating Collector," Energies, MDPI, vol. 12(1), pages 1-20, December.
    10. Barbón, A. & Bayón-Cueli, C. & Bayón, L. & Rodríguez-Suanzes, C., 2022. "Analysis of the tilt and azimuth angles of photovoltaic systems in non-ideal positions for urban applications," Applied Energy, Elsevier, vol. 305(C).
    11. Vaziri Rad, Mohammad Amin & Toopshekan, Ashkan & Rahdan, Parisa & Kasaeian, Alibakhsh & Mahian, Omid, 2020. "A comprehensive study of techno-economic and environmental features of different solar tracking systems for residential photovoltaic installations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    12. Abdulhamed, Ali Jaber & Adam, Nor Mariah & Ab-Kadir, Mohd Zainal Abidin & Hairuddin, Abdul Aziz, 2018. "Review of solar parabolic-trough collector geometrical and thermal analyses, performance, and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 822-831.
    13. Norouzi, Amir Mohammad & Siavashi, Majid & Ahmadi, Rouhollah & Tahmasbi, Milad, 2021. "Experimental study of a parabolic trough solar collector with rotating absorber tube," Renewable Energy, Elsevier, vol. 168(C), pages 734-749.
    14. Karen Barbosa de Melo & Hugo Soeiro Moreira & Marcelo Gradella Villalva, 2020. "Influence of Solar Position Calculation Methods Applied to Horizontal Single-Axis Solar Trackers on Energy Generation," Energies, MDPI, vol. 13(15), pages 1-15, July.
    15. El-Bakry, M. Medhat & Kassem, Mahmoud A. & Hassan, Muhammed A., 2021. "Passive performance enhancement of parabolic trough solar concentrators using internal radiation heat shields," Renewable Energy, Elsevier, vol. 165(P1), pages 52-66.
    16. Nsengiyumva, Walter & Chen, Shi Guo & Hu, Lihua & Chen, Xueyong, 2018. "Recent advancements and challenges in Solar Tracking Systems (STS): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 250-279.
    17. Amirhossein Fathi & Masoomeh Bararzadeh Ledari & Yadollah Saboohi, 2021. "Evaluation of Optimal Occasional Tilt on Photovoltaic Power Plant Energy Efficiency and Land Use Requirements, Iran," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
    18. Zhu, Yongqiang & Liu, Jiahao & Yang, Xiaohua, 2020. "Design and performance analysis of a solar tracking system with a novel single-axis tracking structure to maximize energy collection," Applied Energy, Elsevier, vol. 264(C).
    19. Talavera, D.L. & Muñoz-Cerón, Emilio & Ferrer-Rodríguez, J.P. & Pérez-Higueras, Pedro J., 2019. "Assessment of cost-competitiveness and profitability of fixed and tracking photovoltaic systems: The case of five specific sites," Renewable Energy, Elsevier, vol. 134(C), pages 902-913.
    20. El Fadar, Abdellah, 2016. "Novel process for performance enhancement of a solar continuous adsorption cooling system," Energy, Elsevier, vol. 114(C), pages 10-23.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:169:y:2021:i:c:p:820-835. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.