IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i2p262-d475403.html
   My bibliography  Save this article

An Integrated Comparative Assessment of Coal-Based Carbon Capture and Storage (CCS) Vis-à-Vis Renewable Energies in India’s Low Carbon Electricity Transition Scenarios

Author

Listed:
  • Mitavachan Hiremath

    (Wuppertal Institute for Climate, Environment and Energy, Döppersberg 19, 42103 Wuppertal, Germany
    Center for Sustainability, Policy & Technology Management (SusPoT), 387, 14th B Cross, Yelahanka New Town, Bengaluru 560064, India)

  • Peter Viebahn

    (Wuppertal Institute for Climate, Environment and Energy, Döppersberg 19, 42103 Wuppertal, Germany)

  • Sascha Samadi

    (Wuppertal Institute for Climate, Environment and Energy, Döppersberg 19, 42103 Wuppertal, Germany)

Abstract

Roadmaps for India’s energy future foresee that coal power will continue to play a considerable role until the middle of the 21st century. Among other options, carbon capture and storage (CCS) is being considered as a potential technology for decarbonising the power sector. Consequently, it is important to quantify the relative benefits and trade-offs of coal-CCS in comparison to its competing renewable power sources from multiple sustainability perspectives. In this paper, we assess coal-CCS pathways in India up to 2050 and compare coal-CCS with conventional coal, solar PV and wind power sources through an integrated assessment approach coupled with a nexus perspective (energy-cost-climate-water nexus). Our levelized costs assessment reveals that coal-CCS is expensive and significant cost reductions would be needed for CCS to compete in the Indian power market. In addition, although carbon pricing could make coal-CCS competitive in relation to conventional coal power plants, it cannot influence the lack of competitiveness of coal-CCS with respect to renewables. From a climate perspective, CCS can significantly reduce the life cycle GHG emissions of conventional coal power plants, but renewables are better positioned than coal-CCS if the goal is ambitious climate change mitigation. Our water footprint assessment reveals that coal-CCS consumes an enormous volume of water resources in comparison to conventional coal and, in particular, to renewables. To conclude, our findings highlight that coal-CCS not only suffers from typical new technology development related challenges—such as a lack of technical potential assessments and necessary support infrastructure, and high costs—but also from severe resource constraints (especially water) in an era of global warming and the competition from outperforming renewable power sources. Our study, therefore, adds a considerable level of techno-economic and environmental nexus specificity to the current debate about coal-based large-scale CCS and the low carbon energy transition in emerging and developing economies in the Global South.

Suggested Citation

  • Mitavachan Hiremath & Peter Viebahn & Sascha Samadi, 2021. "An Integrated Comparative Assessment of Coal-Based Carbon Capture and Storage (CCS) Vis-à-Vis Renewable Energies in India’s Low Carbon Electricity Transition Scenarios," Energies, MDPI, vol. 14(2), pages 1-28, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:262-:d:475403
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/2/262/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/2/262/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Srinivasan, Shweta & Kholod, Nazar & Chaturvedi, Vaibhav & Ghosh, Probal Pratap & Mathur, Ritu & Clarke, Leon & Evans, Meredydd & Hejazi, Mohamad & Kanudia, Amit & Koti, Poonam Nagar & Liu, Bo & Parik, 2018. "Water for electricity in India: A multi-model study of future challenges and linkages to climate change mitigation," Applied Energy, Elsevier, vol. 210(C), pages 673-684.
    2. Krishna Priya, G.S. & Bandyopadhyay, Santanu, 2017. "Multi-objective pinch analysis for power system planning," Applied Energy, Elsevier, vol. 202(C), pages 335-347.
    3. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    4. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Research on the peak of CO2 emissions in the developing world: Current progress and future prospect," Applied Energy, Elsevier, vol. 235(C), pages 186-203.
    5. Lari Shanlang Tiewsoh & Jakub Jirásek & Martin Sivek, 2019. "Electricity Generation in India: Present State, Future Outlook and Policy Implications," Energies, MDPI, vol. 12(7), pages 1-14, April.
    6. Peter Viebahn & Daniel Vallentin & Samuel Höller, 2015. "Integrated Assessment of Carbon Capture and Storage (CCS) in South Africa’s Power Sector," Energies, MDPI, vol. 8(12), pages 1-27, December.
    7. Cui, Qi & He, Ling & Han, Guoyi & Chen, Hao & Cao, Juanjuan, 2020. "Review on climate and water resource implications of reducing renewable power curtailment in China: A nexus perspective," Applied Energy, Elsevier, vol. 267(C).
    8. Jin, Yi & Behrens, Paul & Tukker, Arnold & Scherer, Laura, 2019. "Water use of electricity technologies: A global meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    9. Jui-Yuan Lee & Han-Fu Lin, 2019. "Multi-Footprint Constrained Energy Sector Planning," Energies, MDPI, vol. 12(12), pages 1-18, June.
    10. Fan, Jing-Li & Xu, Mao & Li, Fengyu & Yang, Lin & Zhang, Xian, 2018. "Carbon capture and storage (CCS) retrofit potential of coal-fired power plants in China: The technology lock-in and cost optimization perspective," Applied Energy, Elsevier, vol. 229(C), pages 326-334.
    11. Sandra Venghaus & Carolin Märker & Sophia Dieken & Florian Siekmann, 2019. "Linking Environmental Policy Integration and the Water-Energy-Land-(Food-)Nexus: A Review of the European Union’s Energy, Water, and Agricultural Policies," Energies, MDPI, vol. 12(23), pages 1-16, November.
    12. Claudia Cristina Sanchez Moore & Luiz Kulay, 2019. "Effect of the Implementation of Carbon Capture Systems on the Environmental, Energy and Economic Performance of the Brazilian Electricity Matrix," Energies, MDPI, vol. 12(2), pages 1-18, January.
    13. Najmus S. Sifat & Yousef Haseli, 2019. "A Critical Review of CO 2 Capture Technologies and Prospects for Clean Power Generation," Energies, MDPI, vol. 12(21), pages 1-33, October.
    14. Enrica Leccisi & Marco Raugei & Vasilis Fthenakis, 2016. "The Energy and Environmental Performance of Ground-Mounted Photovoltaic Systems—A Timely Update," Energies, MDPI, vol. 9(8), pages 1-13, August.
    15. Viebahn, Peter & Daniel, Vallentin & Samuel, Höller, 2012. "Integrated assessment of carbon capture and storage (CCS) in the German power sector and comparison with the deployment of renewable energies," Applied Energy, Elsevier, vol. 97(C), pages 238-248.
    16. Samadi, Sascha, 2018. "The experience curve theory and its application in the field of electricity generation technologies – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2346-2364.
    17. Katharine Ricke & Laurent Drouet & Ken Caldeira & Massimo Tavoni, 2018. "Country-level social cost of carbon," Nature Climate Change, Nature, vol. 8(10), pages 895-900, October.
    18. Selosse, Sandrine & Ricci, Olivia, 2017. "Carbon capture and storage: Lessons from a storage potential and localization analysis," Applied Energy, Elsevier, vol. 188(C), pages 32-44.
    19. Mittal, Shivika & Dai, Hancheng & Fujimori, Shinichiro & Masui, Toshihiko, 2016. "Bridging greenhouse gas emissions and renewable energy deployment target: Comparative assessment of China and India," Applied Energy, Elsevier, vol. 166(C), pages 301-313.
    20. Price, James & Zeyringer, Marianne & Konadu, Dennis & Sobral Mourão, Zenaida & Moore, Andy & Sharp, Ed, 2018. "Low carbon electricity systems for Great Britain in 2050: An energy-land-water perspective," Applied Energy, Elsevier, vol. 228(C), pages 928-941.
    21. Yabo Wang & Victor Nian & Hailong Li & Jun Yuan, 2018. "Life Cycle Analysis of Integrated Gasification Combined Cycle Power Generation in the Context of Southeast Asia," Energies, MDPI, vol. 11(6), pages 1-18, June.
    22. Sascha Samadi, 2017. "The Social Costs of Electricity Generation—Categorising Different Types of Costs and Evaluating Their Respective Relevance," Energies, MDPI, vol. 10(3), pages 1-37, March.
    23. Murrant, Daniel & Radcliffe, Jonathan, 2018. "Assessing energy storage technology options using a multi-criteria decision analysis-based framework," Applied Energy, Elsevier, vol. 231(C), pages 788-802.
    24. Amjath-Babu, T.S. & Sharma, Bikash & Brouwer, Roy & Rasul, Golam & Wahid, Shahriar M. & Neupane, Nilhari & Bhattarai, Utsav & Sieber, Stefan, 2019. "Integrated modelling of the impacts of hydropower projects on the water-food-energy nexus in a transboundary Himalayan river basin," Applied Energy, Elsevier, vol. 239(C), pages 494-503.
    25. Shivika Mittal & Jing-Yu Liu & Shinichiro Fujimori & Priyadarshi Ramprasad Shukla, 2018. "An Assessment of Near-to-Mid-Term Economic Impacts and Energy Transitions under “2 °C” and “1.5 °C” Scenarios for India," Energies, MDPI, vol. 11(9), pages 1-17, August.
    26. Odeh, Naser A. & Cockerill, Timothy T., 2008. "Life cycle GHG assessment of fossil fuel power plants with carbon capture and storage," Energy Policy, Elsevier, vol. 36(1), pages 367-380, January.
    27. Yuan Chang & Guijun Li & Yuan Yao & Lixiao Zhang & Chang Yu, 2016. "Quantifying the Water-Energy-Food Nexus: Current Status and Trends," Energies, MDPI, vol. 9(2), pages 1-17, January.
    28. Sharifzadeh, Mahdi & Hien, Raymond Khoo Teck & Shah, Nilay, 2019. "China’s roadmap to low-carbon electricity and water: Disentangling greenhouse gas (GHG) emissions from electricity-water nexus via renewable wind and solar power generation, and carbon capture and sto," Applied Energy, Elsevier, vol. 235(C), pages 31-42.
    29. Anoop Kumar Shukla & Zoheb Ahmad & Meeta Sharma & Gaurav Dwivedi & Tikendra Nath Verma & Siddharth Jain & Puneet Verma & Ali Zare, 2020. "Advances of Carbon Capture and Storage in Coal-Based Power Generating Units in an Indian Context," Energies, MDPI, vol. 13(16), pages 1-17, August.
    30. Pfeiffer, Alexander & Millar, Richard & Hepburn, Cameron & Beinhocker, Eric, 2016. "The ‘2°C capital stock’ for electricity generation: Committed cumulative carbon emissions from the electricity generation sector and the transition to a green economy," Applied Energy, Elsevier, vol. 179(C), pages 1395-1408.
    31. Moslehi, Salim & Reddy, T. Agami, 2019. "A new quantitative life cycle sustainability assessment framework: Application to integrated energy systems," Applied Energy, Elsevier, vol. 239(C), pages 482-493.
    32. Garg, Amit & Shukla, P.R., 2009. "Coal and energy security for India: Role of carbon dioxide (CO2) capture and storage (CCS)," Energy, Elsevier, vol. 34(8), pages 1032-1041.
    33. Matthew Rodell & Isabella Velicogna & James S. Famiglietti, 2009. "Satellite-based estimates of groundwater depletion in India," Nature, Nature, vol. 460(7258), pages 999-1002, August.
    34. Li, Tianqi & Roskilly, Anthony Paul & Wang, Yaodong, 2018. "Life cycle sustainability assessment of grid-connected photovoltaic power generation: A case study of Northeast England," Applied Energy, Elsevier, vol. 227(C), pages 465-479.
    35. Zhang, Yiyi & Fang, Jiake & Wang, Saige & Yao, Huilu, 2020. "Energy-water nexus in electricity trade network: A case study of interprovincial electricity trade in China," Applied Energy, Elsevier, vol. 257(C).
    36. Montek Ahluwalia & Himanshu Gupta & Nicholas Stern, 2016. "A More Sustainable Energy Strategy for India," Working Papers id:11096, eSocialSciences.
    37. Christopher A. Scott & Zachary P. Sugg, 2015. "Global Energy Development and Climate-Induced Water Scarcity—Physical Limits, Sectoral Constraints, and Policy Imperatives," Energies, MDPI, vol. 8(8), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Singh, Mukesh Kumar & Malek, Javed & Sharma, Harish Kumar & Kumar, Rahul, 2024. "Converting the threats of fossil fuel-based energy generation into opportunities for renewable energy development in India," Renewable Energy, Elsevier, vol. 224(C).
    2. Ziółkowski, Paweł & Badur, Janusz & Pawlak- Kruczek, Halina & Stasiak, Kamil & Amiri, Milad & Niedzwiecki, Lukasz & Krochmalny, Krystian & Mularski, Jakub & Madejski, Paweł & Mikielewicz, Dariusz, 2022. "Mathematical modelling of gasification process of sewage sludge in reactor of negative CO2 emission power plant," Energy, Elsevier, vol. 244(PA).
    3. Paweł Ziółkowski & Paweł Madejski & Milad Amiri & Tomasz Kuś & Kamil Stasiak & Navaneethan Subramanian & Halina Pawlak-Kruczek & Janusz Badur & Łukasz Niedźwiecki & Dariusz Mikielewicz, 2021. "Thermodynamic Analysis of Negative CO 2 Emission Power Plant Using Aspen Plus, Aspen Hysys, and Ebsilon Software," Energies, MDPI, vol. 14(19), pages 1-27, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Kun & Yu, Bolin & Cheng, Lei & Li, Fei & Fang, Debin, 2022. "The effects of CCUS combined with renewable energy penetration under the carbon peak by an SD-CGE model: Evidence from China," Applied Energy, Elsevier, vol. 321(C).
    2. Tayerani Charmchi, Amir Saman & Ifaei, Pouya & Yoo, ChangKyoo, 2021. "Smart supply-side management of optimal hydro reservoirs using the water/energy nexus concept: A hydropower pinch analysis," Applied Energy, Elsevier, vol. 281(C).
    3. Jin, Yi & Behrens, Paul & Tukker, Arnold & Scherer, Laura, 2021. "The energy-water nexus of China’s interprovincial and seasonal electric power transmission," Applied Energy, Elsevier, vol. 286(C).
    4. Yanguas Parra, Paola & Hauenstein, Christian & Oei, Pao-Yu, 2021. "The death valley of coal – Modelling COVID-19 recovery scenarios for steam coal markets," Applied Energy, Elsevier, vol. 288(C).
    5. Elena Helerea & Marius D. Calin & Cristian Musuroi, 2023. "Water Energy Nexus and Energy Transition—A Review," Energies, MDPI, vol. 16(4), pages 1-31, February.
    6. Yiyi Zhang & Shengren Hou & Jiefeng Liu & Hanbo Zheng & Jiaqi Wang & Chaohai Zhang, 2020. "Evolution of Virtual Water Transfers in China’s Provincial Grids and Its Driving Analysis," Energies, MDPI, vol. 13(2), pages 1-19, January.
    7. Guo, Jian-Xin & Huang, Chen, 2020. "Feasible roadmap for CCS retrofit of coal-based power plants to reduce Chinese carbon emissions by 2050," Applied Energy, Elsevier, vol. 259(C).
    8. Cano-Rodríguez, Sara & Rubio-Varas, Mar & Sesma-Martín, Diego, 2022. "At the crossroad between green and thirsty: Carbon emissions and water consumption of Spanish thermoelectricity generation, 1969–2019," Ecological Economics, Elsevier, vol. 195(C).
    9. Zhang, Shuai & Liu, Linlin & Zhang, Lei & Zhuang, Yu & Du, Jian, 2018. "An optimization model for carbon capture utilization and storage supply chain: A case study in Northeastern China," Applied Energy, Elsevier, vol. 231(C), pages 194-206.
    10. Viebahn, Peter & Vallentin, Daniel & Höller, Samuel, 2014. "Prospects of carbon capture and storage (CCS) in India’s power sector – An integrated assessment," Applied Energy, Elsevier, vol. 117(C), pages 62-75.
    11. Adrien Vogt‐Schilb & Stephane Hallegatte, 2017. "Climate policies and nationally determined contributions: reconciling the needed ambition with the political economy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(6), November.
    12. Thushara, De Silva M. & Hornberger, George M. & Baroud, Hiba, 2019. "Decision analysis to support the choice of a future power generation pathway for Sri Lanka," Applied Energy, Elsevier, vol. 240(C), pages 680-697.
    13. Anzhelika Pirmamedovna Karaeva & Elena Romenovna Magaril & Andrey Vladimirovich Kiselev & Lucian-Ionel Cioca, 2022. "Screening of Factors for Assessing the Environmental and Economic Efficiency of Investment Projects in the Energy Sector," IJERPH, MDPI, vol. 19(18), pages 1-21, September.
    14. Hu, Yingying & Wu, Wei, 2023. "Can fossil energy make a soft landing?— the carbon-neutral pathway in China accompanying CCS," Energy Policy, Elsevier, vol. 174(C).
    15. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Research on the peak of CO2 emissions in the developing world: Current progress and future prospect," Applied Energy, Elsevier, vol. 235(C), pages 186-203.
    16. Sivek, Martin & Jirásek, Jakub & Kavina, Pavel & Vojnarová, Markéta & Kurková, Tereza & Bašová, Andrea, 2020. "Divorce after hundreds of years of marriage: Prospects for coal mining in the Czech Republic with regard to the European Union," Energy Policy, Elsevier, vol. 142(C).
    17. Siderius, Christian & Conway, Declan & Yassine, Mohamed & Murken, Lisa & Lostis, Pierre-Louis & Dalin, Carole, 2020. "Multi-scale analysis of the water-energy-food nexus in the Gulf region," LSE Research Online Documents on Economics 104091, London School of Economics and Political Science, LSE Library.
    18. Zhang, Yiyi & Hou, Shengren & Chen, Shaoqing & Long, Huihui & Liu, Jiefeng & Wang, Jiaqi, 2021. "Tracking flows and network dynamics of virtual water in electricity transmission across China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    19. Peter Viebahn & Emile J. L. Chappin, 2018. "Scrutinising the Gap between the Expected and Actual Deployment of Carbon Capture and Storage—A Bibliometric Analysis," Energies, MDPI, vol. 11(9), pages 1-45, September.
    20. Peder Hjorth & Kaveh Madani, 2023. "Adaptive Water Management: On the Need for Using the Post-WWII Science in Water Governance," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2247-2270, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:262-:d:475403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.