IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i18p11716-d917218.html
   My bibliography  Save this article

Screening of Factors for Assessing the Environmental and Economic Efficiency of Investment Projects in the Energy Sector

Author

Listed:
  • Anzhelika Pirmamedovna Karaeva

    (Department of Environmental Economics, Ural Federal University, Mira-Str., 19, 620002 Ekaterinburg, Russia)

  • Elena Romenovna Magaril

    (Department of Environmental Economics, Ural Federal University, Mira-Str., 19, 620002 Ekaterinburg, Russia)

  • Andrey Vladimirovich Kiselev

    (Department of Environmental Economics, Ural Federal University, Mira-Str., 19, 620002 Ekaterinburg, Russia)

  • Lucian-Ionel Cioca

    (Department of Industrial Engineering and Management, Lucian Blaga University of Sibiu, 550024 Sibiu, Romania)

Abstract

In view of the current agenda in the field of climate and environmental conservation, the requirements for environmental project appraisal are being tightened: the evaluation of environmental indicators of project implementation should be carried out on a par with indicators of its economic performance. Current approaches to the assessment of environmental and economic efficiency do not completely cover the negative environmental impacts of a project’s implementation, and this reduces the effectiveness of the evaluation. Therefore, it is necessary to develop a system of environmental indicators that will address the specifics of the industry. This is made possible on the basis of determining a list of key factors that should be included in the evaluation system. The purpose of this study is to determine the most significant factors for establishing a simple yet thorough assessment framework to evaluate the efficiency of energy investment projects. Research methodology includes an a priori ranking method and analysis of interrelations between factors. Based on the results obtained, the authors have formed a list of key factors that could become the basis of a future system of environmental indicators for the efficiency assessment of energy projects.

Suggested Citation

  • Anzhelika Pirmamedovna Karaeva & Elena Romenovna Magaril & Andrey Vladimirovich Kiselev & Lucian-Ionel Cioca, 2022. "Screening of Factors for Assessing the Environmental and Economic Efficiency of Investment Projects in the Energy Sector," IJERPH, MDPI, vol. 19(18), pages 1-21, September.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:18:p:11716-:d:917218
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/18/11716/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/18/11716/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tenente, Marcos & Henriques, Carla & da Silva, Patrícia Pereira, 2020. "Eco-efficiency assessment of the electricity sector: Evidence from 28 European Union countries," Economic Analysis and Policy, Elsevier, vol. 66(C), pages 293-314.
    2. Chirambo, Dumisani, 2018. "Towards the achievement of SDG 7 in sub-Saharan Africa: Creating synergies between Power Africa, Sustainable Energy for All and climate finance in-order to achieve universal energy access before 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 600-608.
    3. Nie, Pu-yan & Chen, Zi-rui & Wang, Chan & Chen, Xiao-ling, 2019. "Innovation analysis under trading energy efficiency," Energy, Elsevier, vol. 186(C).
    4. Bi, Gong-Bing & Song, Wen & Zhou, P. & Liang, Liang, 2014. "Does environmental regulation affect energy efficiency in China's thermal power generation? Empirical evidence from a slacks-based DEA model," Energy Policy, Elsevier, vol. 66(C), pages 537-546.
    5. Jin, Yi & Behrens, Paul & Tukker, Arnold & Scherer, Laura, 2019. "Water use of electricity technologies: A global meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    6. Valery IOSIFOV & Svetlana RATNER, 2018. "Environmental Management Systems and Environmental Performance The Case of Russian Energy Sector," Journal of Advanced Research in Management, ASERS Publishing, vol. 9(7), pages 1377-1388.
    7. Yingjian, Li & Abakr, Yousif A. & Qi, Qiu & Xinkui, You & Jiping, Zhou, 2016. "Energy efficiency assessment of fixed asset investment projects – A case study of a Shenzhen combined-cycle power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1195-1208.
    8. Sueyoshi, Toshiyuki & Goto, Mika, 2013. "DEA environmental assessment in a time horizon: Malmquist index on fuel mix, electricity and CO2 of industrial nations," Energy Economics, Elsevier, vol. 40(C), pages 370-382.
    9. Bożena Gajdzik & Włodzimierz Sroka, 2021. "Resource Intensity vs. Investment in Production Installations—The Case of the Steel Industry in Poland," Energies, MDPI, vol. 14(2), pages 1-16, January.
    10. Milana Treshcheva & Irina Anikina & Vitaly Sergeev & Sergey Skulkin & Dmitry Treshchev, 2021. "Selection of Heat Pump Capacity Used at Thermal Power Plants under Electricity Market Operating Conditions," Energies, MDPI, vol. 14(1), pages 1-25, January.
    11. Zurano-Cervelló, Patricia & Pozo, Carlos & Mateo-Sanz, Josep María & Jiménez, Laureano & Guillén-Gosálbez, Gonzalo, 2019. "Sustainability efficiency assessment of the electricity mix of the 28 EU member countries combining data envelopment analysis and optimized projections," Energy Policy, Elsevier, vol. 134(C).
    12. Odeh, Naser A. & Cockerill, Timothy T., 2008. "Life cycle GHG assessment of fossil fuel power plants with carbon capture and storage," Energy Policy, Elsevier, vol. 36(1), pages 367-380, January.
    13. Hasanain A. Abdul Wahhab & Hussain H. Al-Kayiem, 2021. "Environmental Risk Mitigation by Biodiesel Blending from Eichhornia crassipes : Performance and Emission Assessment," Sustainability, MDPI, vol. 13(15), pages 1-16, July.
    14. Shah, Wasi Ul Hassan & Hao, Gang & Yan, Hong & Yasmeen, Rizwana & Padda, Ihtsham Ul Haq & Ullah, Assad, 2022. "The impact of trade, financial development and government integrity on energy efficiency: An analysis from G7-Countries," Energy, Elsevier, vol. 255(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lazar Gitelman & Mikhail Kozhevnikov & Yana Visotskaya, 2023. "Diversification as a Method of Ensuring the Sustainability of Energy Supply within the Energy Transition," Resources, MDPI, vol. 12(2), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tenente, Marcos & Henriques, Carla & da Silva, Patrícia Pereira, 2020. "Eco-efficiency assessment of the electricity sector: Evidence from 28 European Union countries," Economic Analysis and Policy, Elsevier, vol. 66(C), pages 293-314.
    2. Sueyoshi, Toshiyuki & Goto, Mika, 2014. "Environmental assessment for corporate sustainability by resource utilization and technology innovation: DEA radial measurement on Japanese industrial sectors," Energy Economics, Elsevier, vol. 46(C), pages 295-307.
    3. Mitavachan Hiremath & Peter Viebahn & Sascha Samadi, 2021. "An Integrated Comparative Assessment of Coal-Based Carbon Capture and Storage (CCS) Vis-à-Vis Renewable Energies in India’s Low Carbon Electricity Transition Scenarios," Energies, MDPI, vol. 14(2), pages 1-28, January.
    4. Sueyoshi, Toshiyuki & Yuan, Yan, 2016. "Returns to damage under undesirable congestion and damages to return under desirable congestion measured by DEA environmental assessment with multiplier restriction: Economic and energy planning for s," Energy Economics, Elsevier, vol. 56(C), pages 288-309.
    5. Sueyoshi, Toshiyuki & Yuan, Yan, 2017. "Social sustainability measured by intermediate approach for DEA environmental assessment: Chinese regional planning for economic development and pollution prevention," Energy Economics, Elsevier, vol. 66(C), pages 154-166.
    6. Lynes, Melissa & Brewer, Brady & Featherstone, Allen, 2016. "Greenhouse Gas Emissions Effect on Cost Efficiencies of U.S. Electric Power Plants," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235890, Agricultural and Applied Economics Association.
    7. Gouveia, M.C. & Henriques, C.O. & Dias, L.C., 2023. "Eco-efficiency changes of the electricity and gas sectors across 28 European countries: A value-based data envelopment analysis productivity approach," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).
    8. Sedef E. Kara & Mustapha D. Ibrahim & Sahand Daneshvar, 2021. "Dual Efficiency and Productivity Analysis of Renewable Energy Alternatives of OECD Countries," Sustainability, MDPI, vol. 13(13), pages 1-14, July.
    9. Sun, Chuanwang & Liu, Xiaohong & Li, Aijun, 2018. "Measuring unified efficiency of Chinese fossil fuel power plants: Intermediate approach combined with group heterogeneity and window analysis," Energy Policy, Elsevier, vol. 123(C), pages 8-18.
    10. Sueyoshi, Toshiyuki & Wang, Derek, 2017. "Measuring scale efficiency and returns to scale on large commercial rooftop photovoltaic systems in California," Energy Economics, Elsevier, vol. 65(C), pages 389-398.
    11. Maria Elisabete Neves & Carla Henriques & João Vilas, 2021. "Financial performance assessment of electricity companies: evidence from Portugal," Operational Research, Springer, vol. 21(4), pages 2809-2857, December.
    12. Sueyoshi, Toshiyuki & Goto, Mika & Wang, Derek, 2017. "Malmquist index measurement for sustainability enhancement in Chinese municipalities and provinces," Energy Economics, Elsevier, vol. 67(C), pages 554-571.
    13. Seifert, Stefan, 2015. "Productivity Growth and its Sources - A StoNED Metafrontier Analyis of the German Electricity Generating Sector," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112975, Verein für Socialpolitik / German Economic Association.
    14. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    15. Henriques, C.O. & Gouveia, C.M. & Tenente, M. & da Silva, P.P., 2022. "Employing Value-Based DEA in the eco-efficiency assessment of the electricity sector," Economic Analysis and Policy, Elsevier, vol. 73(C), pages 826-844.
    16. Sueyoshi, Toshiyuki & Yuan, Yan, 2015. "Comparison among U.S. industrial sectors by DEA environmental assessment: Equipped with analytical capability to handle zero or negative in production factors," Energy Economics, Elsevier, vol. 52(PA), pages 69-86.
    17. Woo, Chungwon & Chung, Yanghon & Chun, Dongphil & Seo, Hangyeol & Hong, Sungjun, 2015. "The static and dynamic environmental efficiency of renewable energy: A Malmquist index analysis of OECD countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 367-376.
    18. Bożena Gajdzik & Magdalena Jaciow & Radosław Wolniak & Robert Wolny & Wieslaw Wes Grebski, 2023. "Assessment of Energy and Heat Consumption Trends and Forecasting in the Small Consumer Sector in Poland Based on Historical Data," Resources, MDPI, vol. 12(9), pages 1-33, September.
    19. Ke Liu & Yurong Qiao & Qian Zhou, 2021. "Analysis of China’s Industrial Green Development Efficiency and Driving Factors: Research Based on MGWR," IJERPH, MDPI, vol. 18(8), pages 1-22, April.
    20. Bai-Chen Xie & Jie Gao & Shuang Zhang & ZhongXiang Zhang, 2017. "What Factors Affect the Competiveness of Power Generation Sector in China? An Analysis Based on Game Cross-efficiency," Working Papers 2017.12, Fondazione Eni Enrico Mattei.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:18:p:11716-:d:917218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.