IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i21p4143-d281797.html
   My bibliography  Save this article

A Critical Review of CO 2 Capture Technologies and Prospects for Clean Power Generation

Author

Listed:
  • Najmus S. Sifat

    (Clean Energy and Fuel Lab, School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI 48859, USA)

  • Yousef Haseli

    (Clean Energy and Fuel Lab, School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI 48859, USA)

Abstract

With rapid growth in global demand for energy, the emission of CO 2 is increasing due to the use of fossil fuels in power plants. Effective strategies are required to decrease the industrial emissions to meet the climate change target set at 21st Conference of the Parties (COP 21). Carbon capture and storage have been recognized as the most useful methods to reduce the CO 2 emissions while using fossil fuels in power generation. This work reviews different methods and updates of the current technologies to capture and separate CO 2 generated in a thermal power plant. Carbon capture is classified in two broad categories depending on the requirement of separation of CO 2 from the gases. The novel methods of oxy combustion and chemical looping combustion carbon capture have been compared with the traditional post combustion and precombustion carbon capture methods. The current state of technology and limitation of each of the processes including commonly used separation techniques for CO 2 from the gas mixture are discussed in this review. Further research and investigations are suggested based on the technological maturity, economic viability, and lack of proper knowledge of the combustion system for further improvement of the capture system.

Suggested Citation

  • Najmus S. Sifat & Yousef Haseli, 2019. "A Critical Review of CO 2 Capture Technologies and Prospects for Clean Power Generation," Energies, MDPI, vol. 12(21), pages 1-33, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4143-:d:281797
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/21/4143/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/21/4143/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lee, Hyun Ju & Lee, Ju Dong & Linga, Praveen & Englezos, Peter & Kim, Young Seok & Lee, Man Sig & Kim, Yang Do, 2010. "Gas hydrate formation process for pre-combustion capture of carbon dioxide," Energy, Elsevier, vol. 35(6), pages 2729-2733.
    2. Mondal, Monoj Kumar & Balsora, Hemant Kumar & Varshney, Prachi, 2012. "Progress and trends in CO2 capture/separation technologies: A review," Energy, Elsevier, vol. 46(1), pages 431-441.
    3. Riaza, J. & Gil, M.V. & Álvarez, L. & Pevida, C. & Pis, J.J. & Rubiera, F., 2012. "Oxy-fuel combustion of coal and biomass blends," Energy, Elsevier, vol. 41(1), pages 429-435.
    4. El Hadri, Nabil & Quang, Dang Viet & Goetheer, Earl L.V. & Abu Zahra, Mohammad R.M., 2017. "Aqueous amine solution characterization for post-combustion CO2 capture process," Applied Energy, Elsevier, vol. 185(P2), pages 1433-1449.
    5. Fan, Junming & Zhu, Lin & Hong, Hui & Jiang, Qiongqiong & Jin, Hongguang, 2017. "A thermodynamic and environmental performance of in-situ gasification of chemical looping combustion for power generation using ilmenite with different coals and comparison with other coal-driven powe," Energy, Elsevier, vol. 119(C), pages 1171-1180.
    6. Park, Sung Ho & Lee, Seung Jong & Lee, Jin Wook & Chun, Sung Nam & Lee, Jung Bin, 2015. "The quantitative evaluation of two-stage pre-combustion CO2 capture processes using the physical solvents with various design parameters," Energy, Elsevier, vol. 81(C), pages 47-55.
    7. Babu, Ponnivalavan & Linga, Praveen & Kumar, Rajnish & Englezos, Peter, 2015. "A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture," Energy, Elsevier, vol. 85(C), pages 261-279.
    8. Hanak, Dawid P. & Manovic, Vasilije, 2016. "Calcium looping with supercritical CO2 cycle for decarbonisation of coal-fired power plant," Energy, Elsevier, vol. 102(C), pages 343-353.
    9. Jiang, Guodong & Huang, Qinglin & Kenarsari, Saeed Danaei & Hu, Xin & Russell, Armistead G. & Fan, Maohong & Shen, Xiaodong, 2015. "A new mesoporous amine-TiO2 based pre-combustion CO2 capture technology," Applied Energy, Elsevier, vol. 147(C), pages 214-223.
    10. Leckner, Bo & Gómez-Barea, Alberto, 2014. "Oxy-fuel combustion in circulating fluidized bed boilers," Applied Energy, Elsevier, vol. 125(C), pages 308-318.
    11. Mofarahi, Masoud & Khojasteh, Yaser & Khaledi, Hiwa & Farahnak, Arsalan, 2008. "Design of CO2 absorption plant for recovery of CO2 from flue gases of gas turbine," Energy, Elsevier, vol. 33(8), pages 1311-1319.
    12. Yin, Chungen & Yan, Jinyue, 2016. "Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling," Applied Energy, Elsevier, vol. 162(C), pages 742-762.
    13. Oh, Jeongseog & Noh, Dongsoon, 2012. "Laminar burning velocity of oxy-methane flames in atmospheric condition," Energy, Elsevier, vol. 45(1), pages 669-675.
    14. Lee, Zhi Hua & Lee, Keat Teong & Bhatia, Subhash & Mohamed, Abdul Rahman, 2012. "Post-combustion carbon dioxide capture: Evolution towards utilization of nanomaterials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2599-2609.
    15. Shakerian, Farid & Kim, Ki-Hyun & Szulejko, Jan E. & Park, Jae-Woo, 2015. "A comparative review between amines and ammonia as sorptive media for post-combustion CO2 capture," Applied Energy, Elsevier, vol. 148(C), pages 10-22.
    16. Theo, Wai Lip & Lim, Jeng Shiun & Hashim, Haslenda & Mustaffa, Azizul Azri & Ho, Wai Shin, 2016. "Review of pre-combustion capture and ionic liquid in carbon capture and storage," Applied Energy, Elsevier, vol. 183(C), pages 1633-1663.
    17. Zheng, Junjie & Zhang, Peng & Linga, Praveen, 2017. "Semiclathrate hydrate process for pre-combustion capture of CO2 at near ambient temperatures," Applied Energy, Elsevier, vol. 194(C), pages 267-278.
    18. Erlach, B. & Schmidt, M. & Tsatsaronis, G., 2011. "Comparison of carbon capture IGCC with pre-combustion decarbonisation and with chemical-looping combustion," Energy, Elsevier, vol. 36(6), pages 3804-3815.
    19. Babu, Ponnivalavan & Ong, Hong Wen Nelson & Linga, Praveen, 2016. "A systematic kinetic study to evaluate the effect of tetrahydrofuran on the clathrate process for pre-combustion capture of carbon dioxide," Energy, Elsevier, vol. 94(C), pages 431-442.
    20. Yang, Mingjun & Jing, Wen & Zhao, Jiafei & Ling, Zheng & Song, Yongchen, 2016. "Promotion of hydrate-based CO2 capture from flue gas by additive mixtures (THF (tetrahydrofuran) + TBAB (tetra-n-butyl ammonium bromide))," Energy, Elsevier, vol. 106(C), pages 546-553.
    21. Naqvi, Rehan & Wolf, Jens & Bolland, Olav, 2007. "Part-load analysis of a chemical looping combustion (CLC) combined cycle with CO2 capture," Energy, Elsevier, vol. 32(4), pages 360-370.
    22. Leung, Dennis Y.C. & Caramanna, Giorgio & Maroto-Valer, M. Mercedes, 2014. "An overview of current status of carbon dioxide capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 426-443.
    23. Tang, Mingchen & Xu, Long & Fan, Maohong, 2015. "Progress in oxygen carrier development of methane-based chemical-looping reforming: A review," Applied Energy, Elsevier, vol. 151(C), pages 143-156.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jussi Saari & Petteri Peltola & Tero Tynjälä & Timo Hyppänen & Juha Kaikko & Esa Vakkilainen, 2020. "High-Efficiency Bioenergy Carbon Capture Integrating Chemical Looping Combustion with Oxygen Uncoupling and a Large Cogeneration Plant," Energies, MDPI, vol. 13(12), pages 1-21, June.
    2. Tomasz Czakiert & Jaroslaw Krzywanski & Anna Zylka & Wojciech Nowak, 2022. "Chemical Looping Combustion: A Brief Overview," Energies, MDPI, vol. 15(4), pages 1-19, February.
    3. Alexander García-Mariaca & Eva Llera-Sastresa, 2021. "Review on Carbon Capture in ICE Driven Transport," Energies, MDPI, vol. 14(21), pages 1-30, October.
    4. Muhammad Nawaz & Humbul Suleman & Abdulhalim Shah Maulud, 2022. "Carbon Capture and Utilization: A Bibliometric Analysis from 2007–2021," Energies, MDPI, vol. 15(18), pages 1-17, September.
    5. Vera Marcantonio & Marcello De Falco & Enrico Bocci, 2022. "Non-Thermal Plasma Technology for CO 2 Conversion—An Overview of the Most Relevant Experimental Results and Kinetic Models," Energies, MDPI, vol. 15(20), pages 1-18, October.
    6. A. G. Olabi & Tabbi Wilberforce & Enas Taha Sayed & Nabila Shehata & Abdul Hai Alami & Hussein M. Maghrabie & Mohammad Ali Abdelkareem, 2022. "Prospect of Post-Combustion Carbon Capture Technology and Its Impact on the Circular Economy," Energies, MDPI, vol. 15(22), pages 1-38, November.
    7. Mitavachan Hiremath & Peter Viebahn & Sascha Samadi, 2021. "An Integrated Comparative Assessment of Coal-Based Carbon Capture and Storage (CCS) Vis-à-Vis Renewable Energies in India’s Low Carbon Electricity Transition Scenarios," Energies, MDPI, vol. 14(2), pages 1-28, January.
    8. Subramanian, Navaneethan & Madejski, Paweł, 2023. "Analysis of CO2 capture process from flue-gases in combined cycle gas turbine power plant using post-combustion capture technology," Energy, Elsevier, vol. 282(C).
    9. Xiaoyang Hou & Shuai Zhong & Jian’an Zhao, 2022. "A Critical Review on Decarbonizing Heating in China: Pathway Exploration for Technology with Multi-Sector Applications," Energies, MDPI, vol. 15(3), pages 1-23, February.
    10. Yue Ma & Xiaodong Chu, 2022. "Optimizing Low-Carbon Pathway of China’s Power Supply Structure Using Model Predictive Control," Energies, MDPI, vol. 15(12), pages 1-20, June.
    11. Georgios Varvoutis & Athanasios Lampropoulos & Evridiki Mandela & Michalis Konsolakis & George E. Marnellos, 2022. "Recent Advances on CO 2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H 2," Energies, MDPI, vol. 15(13), pages 1-38, June.
    12. Lorenzo Colleoni & Alessio Sindoni & Silvia Ravelli, 2023. "Comprehensive Thermodynamic Evaluation of the Natural Gas-Fired Allam Cycle at Full Load," Energies, MDPI, vol. 16(6), pages 1-19, March.
    13. Ipsakis, Dimitris & Varvoutis, Georgios & Lampropoulos, Athanasios & Papaefthimiou, Spiros & Marnellos, George E. & Konsolakis, Michalis, 2021. "Τechno-economic assessment of industrially-captured CO2 upgrade to synthetic natural gas by means of renewable hydrogen," Renewable Energy, Elsevier, vol. 179(C), pages 1884-1896.
    14. Carlos Arnaiz del Pozo & Ángel Jiménez Álvaro & Jan Hendrik Cloete & Schalk Cloete & Shahriar Amini, 2020. "Exergy Analysis of Gas Switching Chemical Looping IGCC Plants," Energies, MDPI, vol. 13(3), pages 1-25, January.
    15. Vyacheslav V. Rodaev & Svetlana S. Razlivalova, 2020. "The Zr-Doped CaO CO 2 Sorbent Fabricated by Wet High-Energy Milling," Energies, MDPI, vol. 13(16), pages 1-7, August.
    16. Kenichiro Takeishi, 2022. "Evolution of Turbine Cooled Vanes and Blades Applied for Large Industrial Gas Turbines and Its Trend toward Carbon Neutrality," Energies, MDPI, vol. 15(23), pages 1-35, November.
    17. Gourav Kumar Rath & Gaurav Pandey & Sakshi Singh & Nadezhda Molokitina & Asheesh Kumar & Sanket Joshi & Geetanjali Chauhan, 2023. "Carbon Dioxide Separation Technologies: Applicable to Net Zero," Energies, MDPI, vol. 16(10), pages 1-22, May.
    18. Lopes, J.V.M. & Bresciani, A.E. & Carvalho, K.M. & Kulay, L.A. & Alves, R.M.B., 2021. "Multi-criteria decision approach to select carbon dioxide and hydrogen sources as potential raw materials for the production of chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    19. Paweł Ziółkowski & Paweł Madejski & Milad Amiri & Tomasz Kuś & Kamil Stasiak & Navaneethan Subramanian & Halina Pawlak-Kruczek & Janusz Badur & Łukasz Niedźwiecki & Dariusz Mikielewicz, 2021. "Thermodynamic Analysis of Negative CO 2 Emission Power Plant Using Aspen Plus, Aspen Hysys, and Ebsilon Software," Energies, MDPI, vol. 14(19), pages 1-27, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Theo, Wai Lip & Lim, Jeng Shiun & Hashim, Haslenda & Mustaffa, Azizul Azri & Ho, Wai Shin, 2016. "Review of pre-combustion capture and ionic liquid in carbon capture and storage," Applied Energy, Elsevier, vol. 183(C), pages 1633-1663.
    2. Kim, Soyoung & Choi, Sung-Deuk & Seo, Yongwon, 2017. "CO2 capture from flue gas using clathrate formation in the presence of thermodynamic promoters," Energy, Elsevier, vol. 118(C), pages 950-956.
    3. Li, Ze-Yu & Xia, Zhi-Ming & Chen, Zhao-Yang & Li, Xiao-Sen & Xu, Chun-Gang & Yan, Ran, 2019. "The plateau effects and crystal transition study in Tetrahydrofuran (THF)/CO2/H2 hydrate formation processes," Applied Energy, Elsevier, vol. 238(C), pages 195-201.
    4. Zheng, Junjie & Bhatnagar, Krittika & Khurana, Maninder & Zhang, Peng & Zhang, Bao-Yong & Linga, Praveen, 2018. "Semiclathrate based CO2 capture from fuel gas mixture at ambient temperature: Effect of concentrations of tetra-n-butylammonium fluoride (TBAF) and kinetic additives," Applied Energy, Elsevier, vol. 217(C), pages 377-389.
    5. Seddighi, Sadegh & Clough, Peter T. & Anthony, Edward J. & Hughes, Robin W. & Lu, Ping, 2018. "Scale-up challenges and opportunities for carbon capture by oxy-fuel circulating fluidized beds," Applied Energy, Elsevier, vol. 232(C), pages 527-542.
    6. Wang, Yiwei & Deng, Ye & Guo, Xuqiang & Sun, Qiang & Liu, Aixian & Zhang, Guangqing & Yue, Gang & Yang, Lanying, 2018. "Experimental and modeling investigation on separation of methane from coal seam gas (CSG) using hydrate formation," Energy, Elsevier, vol. 150(C), pages 377-395.
    7. Yoro, Kelvin O. & Daramola, Michael O. & Sekoai, Patrick T. & Armah, Edward K. & Wilson, Uwemedimo N., 2021. "Advances and emerging techniques for energy recovery during absorptive CO2 capture: A review of process and non-process integration-based strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    8. Li, Zheng & Zhong, Dong-Liang & Lu, Yi-Yu & Yan, Jin & Zou, Zhen-Lin, 2017. "Preferential enclathration of CO2 into tetra-n-butyl phosphonium bromide semiclathrate hydrate in moderate operating conditions: Application for CO2 capture from shale gas," Applied Energy, Elsevier, vol. 199(C), pages 370-381.
    9. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    10. Muhammad Asif & Muhammad Suleman & Ihtishamul Haq & Syed Asad Jamal, 2018. "Post‐combustion CO2 capture with chemical absorption and hybrid system: current status and challenges," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(6), pages 998-1031, December.
    11. Chen, Zhaoyang & Fang, Jie & Xu, Chungang & Xia, Zhiming & Yan, Kefeng & Li, Xiaosen, 2020. "Carbon dioxide hydrate separation from Integrated Gasification Combined Cycle (IGCC) syngas by a novel hydrate heat-mass coupling method," Energy, Elsevier, vol. 199(C).
    12. Rajabi, Mahsa & Mehrpooya, Mehdi & Haibo, Zhao & Huang, Zhen, 2019. "Chemical looping technology in CHP (combined heat and power) and CCHP (combined cooling heating and power) systems: A critical review," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    13. Janusz Kotowicz & Sebastian Michalski & Mateusz Brzęczek, 2019. "The Characteristics of a Modern Oxy-Fuel Power Plant," Energies, MDPI, vol. 12(17), pages 1-34, September.
    14. Xia, Zhi-ming & Li, Xiao-sen & Chen, Zhao-yang & Li, Gang & Cai, Jing & Wang, Yi & Yan, Ke-feng & Xu, Chun-gang, 2017. "Hydrate-based acidic gases capture for clean methane with new synergic additives," Applied Energy, Elsevier, vol. 207(C), pages 584-593.
    15. Zheng, Junjie & Zhang, Peng & Linga, Praveen, 2017. "Semiclathrate hydrate process for pre-combustion capture of CO2 at near ambient temperatures," Applied Energy, Elsevier, vol. 194(C), pages 267-278.
    16. Peter Viebahn & Emile J. L. Chappin, 2018. "Scrutinising the Gap between the Expected and Actual Deployment of Carbon Capture and Storage—A Bibliometric Analysis," Energies, MDPI, vol. 11(9), pages 1-45, September.
    17. Hu, Xiayi (Eric) & Liu, Libin & Luo, Xiao & Xiao, Gongkui & Shiko, Elenica & Zhang, Rui & Fan, Xianfeng & Zhou, Yefeng & Liu, Yang & Zeng, Zhaogang & Li, Chao'en, 2020. "A review of N-functionalized solid adsorbents for post-combustion CO2 capture," Applied Energy, Elsevier, vol. 260(C).
    18. Xu, Yin & Jin, Baosheng & Zhao, Yongling & Hu, Eric J. & Chen, Xiaole & Li, Xiaochuan, 2018. "Numerical simulation of aqueous ammonia-based CO2 absorption in a sprayer tower: An integrated model combining gas-liquid hydrodynamics and chemistry," Applied Energy, Elsevier, vol. 211(C), pages 318-333.
    19. Chen, Shiyi & Yu, Ran & Soomro, Ahsanullah & Xiang, Wenguo, 2019. "Thermodynamic assessment and optimization of a pressurized fluidized bed oxy-fuel combustion power plant with CO2 capture," Energy, Elsevier, vol. 175(C), pages 445-455.
    20. Zheng, Yawen & Gao, Lin & He, Song, 2023. "Analysis of the mechanism of energy consumption for CO2 capture in a power system," Energy, Elsevier, vol. 262(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4143-:d:281797. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.