IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8639-d976122.html
   My bibliography  Save this article

Prospect of Post-Combustion Carbon Capture Technology and Its Impact on the Circular Economy

Author

Listed:
  • A. G. Olabi

    (Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
    Mechanical Engineering and Design, School of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham B4 7ET, UK)

  • Tabbi Wilberforce

    (Mechanical Engineering and Design, School of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham B4 7ET, UK)

  • Enas Taha Sayed

    (Centre for Advanced Materials Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
    Chemical Engineering Department, Faculty of Engineering, Minia University, Minia 61519, Egypt)

  • Nabila Shehata

    (Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62521, Egypt)

  • Abdul Hai Alami

    (Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates)

  • Hussein M. Maghrabie

    (Department of Mechanical Engineering, Faculty of Engineering, South Valley University, Qena 83521, Egypt)

  • Mohammad Ali Abdelkareem

    (Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
    Chemical Engineering Department, Faculty of Engineering, Minia University, Minia 61519, Egypt)

Abstract

The sudden increase in the concentration of carbon dioxide (CO 2 ) in the atmosphere due to the high dependency on fossil products has created the need for an urgent solution to mitigate this challenge. Global warming, which is a direct result of excessive CO 2 emissions into the atmosphere, is one major issue that the world is trying to curb, especially in the 21st Century where most energy generation mediums operate using fossil products. This investigation considered a number of materials ideal for the capturing of CO 2 in the post-combustion process. The application of aqueous ammonia, amine solutions, ionic liquids, and activated carbons is thoroughly discussed. Notable challenges are impeding their advancement, which are clearly expatiated in the report. Some merits and demerits of these technologies are also presented. Future research directions for each of these technologies are also analyzed and explained in detail. Furthermore, the impact of post-combustion CO 2 capture on the circular economy is also presented.

Suggested Citation

  • A. G. Olabi & Tabbi Wilberforce & Enas Taha Sayed & Nabila Shehata & Abdul Hai Alami & Hussein M. Maghrabie & Mohammad Ali Abdelkareem, 2022. "Prospect of Post-Combustion Carbon Capture Technology and Its Impact on the Circular Economy," Energies, MDPI, vol. 15(22), pages 1-38, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8639-:d:976122
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8639/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8639/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mondal, Monoj Kumar & Balsora, Hemant Kumar & Varshney, Prachi, 2012. "Progress and trends in CO2 capture/separation technologies: A review," Energy, Elsevier, vol. 46(1), pages 431-441.
    2. Walter R. Stahel, 2016. "The circular economy," Nature, Nature, vol. 531(7595), pages 435-438, March.
    3. Jung, Wonho & Lee, Jinwon, 2022. "Economic evaluation for four different solid sorbent processes with heat integration for energy-efficient CO2 capture based on PEI-silica sorbent," Energy, Elsevier, vol. 238(PC).
    4. Olajire, Abass A., 2010. "CO2 capture and separation technologies for end-of-pipe applications – A review," Energy, Elsevier, vol. 35(6), pages 2610-2628.
    5. Najmus S. Sifat & Yousef Haseli, 2019. "A Critical Review of CO 2 Capture Technologies and Prospects for Clean Power Generation," Energies, MDPI, vol. 12(21), pages 1-33, October.
    6. Thiyagarajan, Subramanian & Varuvel, Edwin Geo & Martin, Leenus Jesu & Beddhannan, Nagalingam, 2019. "Mitigation of carbon footprints through a blend of biofuels and oxygenates, combined with post-combustion capture system in a single cylinder CI engine," Renewable Energy, Elsevier, vol. 130(C), pages 1067-1081.
    7. Ben-Mansour, R. & Habib, M.A. & Bamidele, O.E. & Basha, M. & Qasem, N.A.A. & Peedikakkal, A. & Laoui, T. & Ali, M., 2016. "Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations – A review," Applied Energy, Elsevier, vol. 161(C), pages 225-255.
    8. Hosseini-Ardali, Seyed Mohsen & Hazrati-Kalbibaki, Majid & Fattahi, Moslem & Lezsovits, Ferenc, 2020. "Multi-objective optimization of post combustion CO2 capture using methyldiethanolamine (MDEA) and piperazine (PZ) bi-solvent," Energy, Elsevier, vol. 211(C).
    9. Theo, Wai Lip & Lim, Jeng Shiun & Hashim, Haslenda & Mustaffa, Azizul Azri & Ho, Wai Shin, 2016. "Review of pre-combustion capture and ionic liquid in carbon capture and storage," Applied Energy, Elsevier, vol. 183(C), pages 1633-1663.
    10. Cabral, Renato P. & Mac Dowell, Niall, 2017. "A novel methodological approach for achieving £/MWh cost reduction of CO2 capture and storage (CCS) processes," Applied Energy, Elsevier, vol. 205(C), pages 529-539.
    11. Goto, Kazuya & Yogo, Katsunori & Higashii, Takayuki, 2013. "A review of efficiency penalty in a coal-fired power plant with post-combustion CO2 capture," Applied Energy, Elsevier, vol. 111(C), pages 710-720.
    12. Plaza, M.G. & González, A.S. & Pevida, C. & Pis, J.J. & Rubiera, F., 2012. "Valorisation of spent coffee grounds as CO2 adsorbents for postcombustion capture applications," Applied Energy, Elsevier, vol. 99(C), pages 272-279.
    13. Chaturvedi, Krishna Raghav & Sinha, A.S.K. & Nair, Vishnu Chandrasekharan & Sharma, Tushar, 2021. "Enhanced carbon dioxide sequestration by direct injection of flue gas doped with hydrogen into hydrate reservoir: Possibility of natural gas production," Energy, Elsevier, vol. 227(C).
    14. Pavel Tcvetkov & Alexey Cherepovitsyn & Sergey Fedoseev, 2019. "The Changing Role of CO 2 in the Transition to a Circular Economy: Review of Carbon Sequestration Projects," Sustainability, MDPI, vol. 11(20), pages 1-19, October.
    15. Zhao, Ruikai & Liu, Longcheng & Zhao, Li & Deng, Shuai & Li, Shuangjun & Zhang, Yue, 2019. "A comprehensive performance evaluation of temperature swing adsorption for post-combustion carbon dioxide capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    16. Subraveti, Sai Gokul & Roussanaly, Simon & Anantharaman, Rahul & Riboldi, Luca & Rajendran, Arvind, 2022. "How much can novel solid sorbents reduce the cost of post-combustion CO2 capture? A techno-economic investigation on the cost limits of pressure–vacuum swing adsorption," Applied Energy, Elsevier, vol. 306(PA).
    17. Plaza, M.G. & González, A.S. & Pis, J.J. & Rubiera, F. & Pevida, C., 2014. "Production of microporous biochars by single-step oxidation: Effect of activation conditions on CO2 capture," Applied Energy, Elsevier, vol. 114(C), pages 551-562.
    18. Zhang, Zhien & Borhani, Tohid N. & Olabi, Abdul G., 2020. "Status and perspective of CO2 absorption process," Energy, Elsevier, vol. 205(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed M. Nassef, 2023. "Improving CO 2 Absorption Using Artificial Intelligence and Modern Optimization for a Sustainable Environment," Sustainability, MDPI, vol. 15(12), pages 1-22, June.
    2. Abdul Ghani Olabi & Hegazy Rezk & Enas Taha Sayed & Tabbi Awotwe & Samah Ibrahim Alshathri & Mohammad Ali Abdelkareem, 2023. "Optimal Parameter Identification of Single-Sensor Fractional Maximum Power Point Tracker for Thermoelectric Generator," Sustainability, MDPI, vol. 15(6), pages 1-13, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander García-Mariaca & Eva Llera-Sastresa, 2021. "Review on Carbon Capture in ICE Driven Transport," Energies, MDPI, vol. 14(21), pages 1-30, October.
    2. Fernando Rubiera & Carlos Córdoba & Tamara Pena & Marta G. Plaza, 2024. "Production of Sustainable Adsorbents for CO 2 Capture Applications from Food Biowastes," Energies, MDPI, vol. 17(5), pages 1-20, March.
    3. Akinola, Toluleke E. & Bonilla Prado, Phebe L. & Wang, Meihong, 2022. "Experimental studies, molecular simulation and process modelling\simulation of adsorption-based post-combustion carbon capture for power plants: A state-of-the-art review," Applied Energy, Elsevier, vol. 317(C).
    4. Kobayashi, Makoto & Akiho, Hiroyuki & Nakao, Yoshinobu, 2015. "Performance evaluation of porous sodium aluminate sorbent for halide removal process in oxy-fuel IGCC power generation plant," Energy, Elsevier, vol. 92(P3), pages 320-327.
    5. Chen, S.J. & Zhu, M. & Fu, Y. & Huang, Y.X. & Tao, Z.C. & Li, W.L., 2017. "Using 13X, LiX, and LiPdAgX zeolites for CO2 capture from post-combustion flue gas," Applied Energy, Elsevier, vol. 191(C), pages 87-98.
    6. Vadim Fetisov & Adam M. Gonopolsky & Maria Yu. Zemenkova & Schipachev Andrey & Hadi Davardoost & Amir H. Mohammadi & Masoud Riazi, 2023. "On the Integration of CO 2 Capture Technologies for an Oil Refinery," Energies, MDPI, vol. 16(2), pages 1-19, January.
    7. Xu, Yin & Jin, Baosheng & Zhao, Yongling & Hu, Eric J. & Chen, Xiaole & Li, Xiaochuan, 2018. "Numerical simulation of aqueous ammonia-based CO2 absorption in a sprayer tower: An integrated model combining gas-liquid hydrodynamics and chemistry," Applied Energy, Elsevier, vol. 211(C), pages 318-333.
    8. Bhatia, Shashi Kant & Bhatia, Ravi Kant & Jeon, Jong-Min & Kumar, Gopalakrishnan & Yang, Yung-Hun, 2019. "Carbon dioxide capture and bioenergy production using biological system – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 143-158.
    9. Zhu, Xuancan & Chen, Chunping & Suo, Hongri & Wang, Qiang & Shi, Yixiang & O'Hare, Dermot & Cai, Ningsheng, 2019. "Synthesis of elevated temperature CO2 adsorbents from aqueous miscible organic-layered double hydroxides," Energy, Elsevier, vol. 167(C), pages 960-969.
    10. Plaza, M.G. & Durán, I. & Rubiera, F. & Pevida, C., 2015. "CO2 adsorbent pellets produced from pine sawdust: Effect of coal tar pitch addition," Applied Energy, Elsevier, vol. 144(C), pages 182-192.
    11. Choi, Seungyeong & Yun, Maroosol & Kim, Kiwoong & Park, Yong-Ki & Cho, Hyung Hee, 2022. "Energy-efficient design of dual circulating fluidized bed system for CCUS by multi-tube configuration with junctions," Energy, Elsevier, vol. 245(C).
    12. Gourav Kumar Rath & Gaurav Pandey & Sakshi Singh & Nadezhda Molokitina & Asheesh Kumar & Sanket Joshi & Geetanjali Chauhan, 2023. "Carbon Dioxide Separation Technologies: Applicable to Net Zero," Energies, MDPI, vol. 16(10), pages 1-22, May.
    13. Narukulla, Ramesh & Chaturvedi, Krishna Raghav & Ojha, Umaprasana & Sharma, Tushar, 2022. "Carbon dioxide capturing evaluation of polyacryloyl hydrazide solutions via rheological analysis for carbon utilization applications," Energy, Elsevier, vol. 241(C).
    14. Durán-Romero, Gemma & López, Ana M. & Beliaeva, Tatiana & Ferasso, Marcos & Garonne, Christophe & Jones, Paul, 2020. "Bridging the gap between circular economy and climate change mitigation policies through eco-innovations and Quintuple Helix Model," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    15. Muhammad Asif & Muhammad Suleman & Ihtishamul Haq & Syed Asad Jamal, 2018. "Post‐combustion CO2 capture with chemical absorption and hybrid system: current status and challenges," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(6), pages 998-1031, December.
    16. Georgios Varvoutis & Athanasios Lampropoulos & Evridiki Mandela & Michalis Konsolakis & George E. Marnellos, 2022. "Recent Advances on CO 2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H 2," Energies, MDPI, vol. 15(13), pages 1-38, June.
    17. Li, Shuangjun & Deng, Shuai & Zhao, Li & Zhao, Ruikai & Yuan, Xiangzhou, 2021. "Thermodynamic carbon pump 2.0: Elucidating energy efficiency through the thermodynamic cycle," Energy, Elsevier, vol. 215(PB).
    18. Qasem, Naef A.A. & Ben-Mansour, Rached & Habib, Mohamed A., 2018. "An efficient CO2 adsorptive storage using MOF-5 and MOF-177," Applied Energy, Elsevier, vol. 210(C), pages 317-326.
    19. Costa, Alexis & Coppitters, Diederik & Dubois, Lionel & Contino, Francesco & Thomas, Diane & De Weireld, Guy, 2024. "Energy, exergy, economic and environmental (4E) analysis of a cryogenic carbon purification unit with membrane for oxyfuel cement plant flue gas," Applied Energy, Elsevier, vol. 357(C).
    20. Jiang, L. & Gonzalez-Diaz, A. & Ling-Chin, J. & Roskilly, A.P. & Smallbone, A.J., 2019. "Post-combustion CO2 capture from a natural gas combined cycle power plant using activated carbon adsorption," Applied Energy, Elsevier, vol. 245(C), pages 1-15.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8639-:d:976122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.