IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i22p7792-d684476.html
   My bibliography  Save this article

Unintended Effects of Energy Efficiency Policy: Lessons Learned in the Residential Sector

Author

Listed:
  • Andra Blumberga

    (Institute of Energy Systems and Environment, Riga Technical University, LV-1048 Riga, Latvia)

  • Gatis Bazbauers

    (Institute of Energy Systems and Environment, Riga Technical University, LV-1048 Riga, Latvia)

  • Selina Vancane

    (Institute of Energy Systems and Environment, Riga Technical University, LV-1048 Riga, Latvia)

  • Ivars Ijabs

    (Advanced Social and Political Research Institute, University of Latvia, LV-1019 Riga, Latvia)

  • Jurijs Nikisins

    (Advanced Social and Political Research Institute, University of Latvia, LV-1019 Riga, Latvia)

  • Dagnija Blumberga

    (Institute of Energy Systems and Environment, Riga Technical University, LV-1048 Riga, Latvia)

Abstract

The European Union has set an ambitious goal to tackle climate change, and energy efficiency in the residential sector is among the measures required to close the gap between targeted and actual greenhouse gas emissions. While different policy tools have been applied, the diffusion rate of these measures remains low. A system dynamics simulation model of the residential sector was developed to assess the advantages and drawbacks of energy efficiency policy in the multi-family building sector based on experience accumulated over the last twelve years in Latvia. The model was validated in expert group model building sessions and with historical trends. Simulating the model, a hypothesis was tested that supported the idea that seemingly positive policy tools set the stage for a series of unintended adverse effects due to the complex interactions between different system components. The common assumption that information and financial support should result in significant energy efficiency diffusion proved to be wrong. It instead results in unintended long-term consequences that hamper national energy efficiency goals. The model carried out an analysis and brought insights for improving the effectiveness of government energy efficiency policy. It is concluded that models that broadly describe complex systems are needed to identify effective policies and foresee unintended side effects.

Suggested Citation

  • Andra Blumberga & Gatis Bazbauers & Selina Vancane & Ivars Ijabs & Jurijs Nikisins & Dagnija Blumberga, 2021. "Unintended Effects of Energy Efficiency Policy: Lessons Learned in the Residential Sector," Energies, MDPI, vol. 14(22), pages 1-31, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7792-:d:684476
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/22/7792/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/22/7792/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stefanie Heinzle, 2012. "Disclosure of Energy Operating Cost Information: A Silver Bullet for Overcoming the Energy-Efficiency Gap?," Journal of Consumer Policy, Springer, vol. 35(1), pages 43-64, March.
    2. Ana Ramos & Xavier Labandeira & Andreas Löschel, 2016. "Pro-environmental Households and Energy Efficiency in Spain," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 63(2), pages 367-393, February.
    3. Allcott, Hunt, 2011. "Social norms and energy conservation," Journal of Public Economics, Elsevier, vol. 95(9-10), pages 1082-1095, October.
    4. Hazhir Rahmandad & John Sterman, 2008. "Heterogeneity and Network Structure in the Dynamics of Diffusion: Comparing Agent-Based and Differential Equation Models," Management Science, INFORMS, vol. 54(5), pages 998-1014, May.
    5. Ebrahimigharehbaghi, Shima & Qian, Queena K. & Meijer, Frits M. & Visscher, Henk J., 2019. "Unravelling Dutch homeowners' behaviour towards energy efficiency renovations: What drives and hinders their decision-making?," Energy Policy, Elsevier, vol. 129(C), pages 546-561.
    6. de Gooyert, Vincent & Rouwette, Etiënne & van Kranenburg, Hans & Freeman, Edward & van Breen, Harry, 2016. "Sustainability transition dynamics: Towards overcoming policy resistance," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 135-145.
    7. Girod, Bastien & Stucki, Tobias & Woerter, Martin, 2017. "How do policies for efficient energy use in the household sector induce energy-efficiency innovation? An evaluation of European countries," Energy Policy, Elsevier, vol. 103(C), pages 223-237.
    8. Trotta, Gianluca, 2018. "The determinants of energy efficient retrofit investments in the English residential sector," Energy Policy, Elsevier, vol. 120(C), pages 175-182.
    9. Labanca, Nicola & Bertoldi, Paolo, 2018. "Beyond energy efficiency and individual behaviours: policy insights from social practice theories," Energy Policy, Elsevier, vol. 115(C), pages 494-502.
    10. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    11. Allcott, Hunt, 2011. "Social norms and energy conservation," Journal of Public Economics, Elsevier, vol. 95(9), pages 1082-1095.
    12. Kivimaa, Paula & Kern, Florian, 2016. "Creative destruction or mere niche support? Innovation policy mixes for sustainability transitions," Research Policy, Elsevier, vol. 45(1), pages 205-217.
    13. Jan Rotmans & Derk Loorbach, 2009. "Complexity and Transition Management," Journal of Industrial Ecology, Yale University, vol. 13(2), pages 184-196, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Malek Al-Chalabi, 2023. "Targeted and Tangential Effects—A Novel Framework for Energy Research and Practitioners," Sustainability, MDPI, vol. 15(17), pages 1-12, August.
    2. Ozoliņa, Signe Allena & Pakere, Ieva & Jaunzems, Dzintars & Blumberga, Andra & Grāvelsiņš, Armands & Dubrovskis, Dagnis & Daģis, Salvis, 2022. "Can energy sector reach carbon neutrality with biomass limitations?," Energy, Elsevier, vol. 249(C).
    3. Alberto Barbaresi & Mattia Ceccarelli & Giulia Menichetti & Daniele Torreggiani & Patrizia Tassinari & Marco Bovo, 2022. "Application of Machine Learning Models for Fast and Accurate Predictions of Building Energy Need," Energies, MDPI, vol. 15(4), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Attila Havas & Doris Schartinger & K. Matthias Weber, 2022. "Innovation Studies, Social Innovation, and Sustainability Transitions Research: From mutual ignorance towards an integrative perspective?," CERS-IE WORKING PAPERS 2227, Institute of Economics, Centre for Economic and Regional Studies.
    2. Andor, Mark A. & Fels, Katja M., 2018. "Behavioral Economics and Energy Conservation – A Systematic Review of Non-price Interventions and Their Causal Effects," Ecological Economics, Elsevier, vol. 148(C), pages 178-210.
    3. Trotta, Gianluca, 2018. "Factors affecting energy-saving behaviours and energy efficiency investments in British households," Energy Policy, Elsevier, vol. 114(C), pages 529-539.
    4. Schleich, Joachim & Gassmann, Xavier & Meissner, Thomas & Faure, Corinne, 2023. "Making the factors underlying the implicit discount rate tangible," Energy Policy, Elsevier, vol. 177(C).
    5. Schleich, Joachim & Gassmann, Xavier & Faure, Corinne & Meissner, Thomas, 2016. "Making the implicit explicit: A look inside the implicit discount rate," Energy Policy, Elsevier, vol. 97(C), pages 321-331.
    6. Auke Hoekstra & Maarten Steinbuch & Geert Verbong, 2017. "Creating Agent-Based Energy Transition Management Models That Can Uncover Profitable Pathways to Climate Change Mitigation," Complexity, Hindawi, vol. 2017, pages 1-23, December.
    7. Haghnevis, Moeed & Askin, Ronald G. & Armbruster, Dieter, 2016. "An agent-based modeling optimization approach for understanding behavior of engineered complex adaptive systems," Socio-Economic Planning Sciences, Elsevier, vol. 56(C), pages 67-87.
    8. Ramos, A. & Gago, A. & Labandeira, X. & Linares, P., 2015. "The role of information for energy efficiency in the residential sector," Energy Economics, Elsevier, vol. 52(S1), pages 17-29.
    9. Schleich, Joachim & Faure, Corinne & Guetlein, Marie-Charlotte & Tu, Gengyang, 2020. "Conveyance, envy, and homeowner choice of appliances," Energy Economics, Elsevier, vol. 89(C).
    10. Jihyo Kim & Suhyeon Nam, 2021. "Do Household Time, Risk, and Social Preferences Affect Home Energy Retrofit Decisions in Korea?," Sustainability, MDPI, vol. 13(8), pages 1-18, April.
    11. Yongliang Yang & Yiyang Guo & Suqing Luo, 2020. "Consumers’ Intention and Cognition for Low-Carbon Behavior: A Case Study of Hangzhou in China," Energies, MDPI, vol. 13(21), pages 1-19, November.
    12. Soojin Jo & Lilia Karnizova, 2021. "Energy Efficiency and Fluctuations in CO2 Emissions," Staff Working Papers 21-47, Bank of Canada.
    13. Michael P. Schlaile & Sophie Urmetzer & Vincent Blok & Allan Dahl Andersen & Job Timmermans & Matthias Mueller & Jan Fagerberg & Andreas Pyka, 2017. "Innovation Systems for Transformations towards Sustainability? Taking the Normative Dimension Seriously," Sustainability, MDPI, vol. 9(12), pages 1-20, December.
    14. Paolo Zangheri & Tiago Serrenho & Paolo Bertoldi, 2019. "Energy Savings from Feedback Systems: A Meta-Studies’ Review," Energies, MDPI, vol. 12(19), pages 1-18, October.
    15. Lillemo, Shuling Chen, 2014. "Measuring the effect of procrastination and environmental awareness on households' energy-saving behaviours: An empirical approach," Energy Policy, Elsevier, vol. 66(C), pages 249-256.
    16. Jordi Molas-Gallart & Alejandra Boni & Sandro Giachi & Johan Schot, 2021. "A formative approach to the evaluation of Transformative Innovation Policies [The Need for Reflexive Evaluation Approaches in Development Cooperation]," Research Evaluation, Oxford University Press, vol. 30(4), pages 431-442.
    17. Chatzigeorgiou, I.M. & Andreou, G.T., 2021. "A systematic review on feedback research for residential energy behavior change through mobile and web interfaces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    18. Beatty, Timothy K.M. & Katare, Bhagyashree, 2018. "Low-cost approaches to increasing gym attendance," Journal of Health Economics, Elsevier, vol. 61(C), pages 63-76.
    19. Ajla Cosic & Hana Cosic & Sebastian Ille, 2018. "Can nudges affect students' green behaviour? A field experiment," Journal of Behavioral Economics for Policy, Society for the Advancement of Behavioral Economics (SABE), vol. 2(1), pages 107-111, March.
    20. Bartels, Lara & Kesternich, Martin, 2022. "Motivate the crowd or crowd- them out? The impact of local government spending on the voluntary provision of a green public good," ZEW Discussion Papers 22-040, ZEW - Leibniz Centre for European Economic Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7792-:d:684476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.