Comment on Hamayun et al. Evaluation of Two-Column Air Separation Processes Based on Exergy Analysis. Energies 2020, 13 , 6361
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Royo, Patricia & Ferreira, Víctor José & López-Sabirón, Ana M. & García-Armingol, Tatiana & Ferreira, Germán, 2018. "Retrofitting strategies for improving the energy and environmental efficiency in industrial furnaces: A case study in the aluminium sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P2), pages 1813-1822.
- Lukasz Szablowski & Piotr Krawczyk & Marcin Wolowicz, 2021. "Exergy Analysis of Adiabatic Liquid Air Energy Storage (A-LAES) System Based on Linde–Hampson Cycle," Energies, MDPI, vol. 14(4), pages 1-16, February.
- Janusz Kotowicz & Sebastian Michalski & Mateusz Brzęczek, 2019. "The Characteristics of a Modern Oxy-Fuel Power Plant," Energies, MDPI, vol. 12(17), pages 1-34, September.
- Bělohradský, Petr & Skryja, Pavel & Hudák, Igor, 2014. "Experimental study on the influence of oxygen content in the combustion air on the combustion characteristics," Energy, Elsevier, vol. 75(C), pages 116-126.
- María Carmen Carnero & Andrés Gómez, 2019. "Optimization of Decision Making in the Supply of Medicinal Gases Used in Health Care," Sustainability, MDPI, vol. 11(10), pages 1-31, May.
- Adamson, Richard & Hobbs, Martin & Silcock, Andy & Willis, Mark J., 2017. "Steady-state optimisation of a multiple cryogenic air separation unit and compressor plant," Applied Energy, Elsevier, vol. 189(C), pages 221-232.
- Corti, Andrea & Lombardi, Lidia, 2004. "Biomass integrated gasification combined cycle with reduced CO2 emissions: Performance analysis and life cycle assessment (LCA)," Energy, Elsevier, vol. 29(12), pages 2109-2124.
- Hossam A. Gabbar & Mohamed Aboughaly & Stefano Russo, 2017. "Conceptual Design and Energy Analysis of Integrated Combined Cycle Gasification System," Sustainability, MDPI, vol. 9(8), pages 1-18, August.
- Wang, Chen & Akkurt, Nevzat & Zhang, Xiaosong & Luo, Yimo & She, Xiaohui, 2020. "Techno-economic analyses of multi-functional liquid air energy storage for power generation, oxygen production and heating," Applied Energy, Elsevier, vol. 275(C).
- Muhammad Haris Hamayun & Naveed Ramzan & Murid Hussain & Muhammad Faheem, 2020. "Evaluation of Two-Column Air Separation Processes Based on Exergy Analysis," Energies, MDPI, vol. 13(23), pages 1-20, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Miroslav Variny & Dominika Jediná & Miroslav Rimár & Ján Kizek & Marianna Kšiňanová, 2021. "Cutting Oxygen Production-Related Greenhouse Gas Emissions by Improved Compression Heat Management in a Cryogenic Air Separation Unit," IJERPH, MDPI, vol. 18(19), pages 1-32, October.
- Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
- Dzido, Aleksandra & Krawczyk, Piotr & Wołowicz, Marcin & Badyda, Krzysztof, 2022. "Comparison of advanced air liquefaction systems in Liquid Air Energy Storage applications," Renewable Energy, Elsevier, vol. 184(C), pages 727-739.
- Heo, SungKu & Byun, Jaewon & Ifaei, Pouya & Ko, Jaerak & Ha, Byeongmin & Hwangbo, Soonho & Yoo, ChangKyoo, 2024. "Towards mega-scale decarbonized industrial park (Mega-DIP): Generative AI-driven techno-economic and environmental assessment of renewable and sustainable energy utilization in petrochemical industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
- Che, Gelegen & Zhang, Yanyan & Tang, Lixin & Zhao, Shengnan, 2023. "A deep reinforcement learning based multi-objective optimization for the scheduling of oxygen production system in integrated iron and steel plants," Applied Energy, Elsevier, vol. 345(C).
- Li, Jun & Huang, Hongyu & Kobayashi, Noriyuki & He, Zhaohong & Osaka, Yugo & Zeng, Tao, 2015. "Numerical study on effect of oxygen content in combustion air on ammonia combustion," Energy, Elsevier, vol. 93(P2), pages 2053-2068.
- Ding, Xingqi & Zhou, Yufei & Duan, Liqiang & Li, Da & Zheng, Nan, 2023. "Comprehensive performance investigation of a novel solar-assisted liquid air energy storage system with different operating modes in different seasons," Energy, Elsevier, vol. 284(C).
- Michael L. Carty & Stephane Bilodeau, 2023. "Benchmarking Thermodynamic Models for Optimization of PSA Oxygen Generators," J, MDPI, vol. 6(2), pages 1-24, June.
- Ren, Siyue & Feng, Xiao & Wang, Yufei, 2021. "Emergy evaluation of the integrated gasification combined cycle power generation systems with a carbon capture system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
- Kadir Kaan Göncü & Onur Çetin, 2022. "A Decision Model for Supplier Selection Criteria in Healthcare Enterprises with Dematel ANP Method," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
- Muhammad Haris Hamayun & Naveed Ramzan & Murid Hussain & Muhammad Faheem, 2021. "Reply to Variny et al. Comment on “Hamayun et al. Evaluation of Two-Column Air Separation Processes Based on Exergy Analysis. Energies 2020, 13 , 6361”," Energies, MDPI, vol. 14(20), pages 1-5, October.
- Zhang, Liu & Zheng, Zhong & Chai, Yi & Zhang, Kaitian & Lian, Xiaoyuan & Zhang, Kai & Zhao, Liuqiang, 2024. "Enhancing robustness: Multi-stage adaptive robust scheduling of oxygen systems in steel enterprises under demand uncertainty," Applied Energy, Elsevier, vol. 359(C).
- Wang, Lijun & Agyemang, Samuel A. & Amini, Hossein & Shahbazi, Abolghasem, 2015. "Mathematical modeling of production and biorefinery of energy crops," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 530-544.
- Wang, Chen & Zhang, Xiaosong & You, Zhanping & Zhang, Muxing & Huang, Shifang & She, Xiaohui, 2021. "The effect of air purification on liquid air energy storage – An analysis from molecular to systematic modelling," Applied Energy, Elsevier, vol. 300(C).
- Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
- Krzysztof Pikoń & Piotr Krawczyk & Krzysztof Badyda & Magdalena Bogacka, 2019. "Predictive Analysis of Waste Co-Combustion with Fossil Fuels Using the Life Cycle Assessment (LCA) Methodology," Energies, MDPI, vol. 12(19), pages 1-11, September.
- Ardolino, Filomena & Lodato, Concetta & Astrup, Thomas F. & Arena, Umberto, 2018. "Energy recovery from plastic and biomass waste by means of fluidized bed gasification: A life cycle inventory model," Energy, Elsevier, vol. 165(PB), pages 299-314.
- Wang, Kaiwen & Tong, Lige & Yin, Shaowu & Yang, Yan & Zhang, Peikun & Liu, Chuanping & Zuo, Zhongqi & Wang, Li & Ding, Yulong, 2024. "Novel ASU–LAES system with flexible energy release: Analysis of cycle performance, economics, and peak shaving advantages," Energy, Elsevier, vol. 288(C).
- Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
- Saharudin, Djasmine Mastisya & Jeswani, Harish Kumar & Azapagic, Adisa, 2023. "Bioenergy with carbon capture and storage (BECSS): Life cycle environmental and economic assessment of electricity generated from palm oil wastes," Applied Energy, Elsevier, vol. 349(C).
More about this item
Keywords
cryogenic air separation; oxygen production; Aspen Plus software; Peng–Robinson equation of state; process scheme; compressed air drying;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6443-:d:652124. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.