IDEAS home Printed from https://ideas.repec.org/a/gam/jjopen/v6y2023i2p23-341d1162903.html
   My bibliography  Save this article

Benchmarking Thermodynamic Models for Optimization of PSA Oxygen Generators

Author

Listed:
  • Michael L. Carty

    (Smart Phases Inc., Plattsburgh, NY 12903, USA)

  • Stephane Bilodeau

    (Smart Phases Inc., Plattsburgh, NY 12903, USA
    Department of Bioengineering, McGill University, Montreal, QC H3A 0B9, Canada)

Abstract

In this review, the authors conducted benchmarks for three thermodynamic models to analyze PSA-based medical oxygen concentrator (MOC) systems to allow for optimization and operational flexibility. PSA oxygen generator plants are good medical-grade oxygen sources, a crucial tool in healthcare from the primary to the tertiary level. However, they must be designed accordingly and properly operated, considering key design goals such as improving adsorbent productivity, improving oxygen recovery, and innovating to reduce unit size and weight. The importance of mapping the performance of various design and operating requirements or designs themselves on outlet product specifications and production effectiveness is outlined. Emphasizing optimal PSA design and operation, the authors suggest considering simulation-based optimization frameworks or high-fidelity modeling for the optimal layout and operation conditions of adsorption-based MOC systems. Notwithstanding, a simplified first-principles-based model with additional assumptions and simplifications generates a large volume of scenarios faster. Therefore, it represents a good approach for a feasibility study dealing with many options and designs or even the real-time monitoring of PSA operating conditions. All this paved the way for efficient translation into machine learning models and even deep learning networks that might be better suited to simulate the complex PSA process. The conclusion outlines that PSA-based plants can be flexible and effective units using any of the three models when properly optimized.

Suggested Citation

  • Michael L. Carty & Stephane Bilodeau, 2023. "Benchmarking Thermodynamic Models for Optimization of PSA Oxygen Generators," J, MDPI, vol. 6(2), pages 1-24, June.
  • Handle: RePEc:gam:jjopen:v:6:y:2023:i:2:p:23-341:d:1162903
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-8800/6/2/23/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-8800/6/2/23/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muhammad Haris Hamayun & Naveed Ramzan & Murid Hussain & Muhammad Faheem, 2020. "Evaluation of Two-Column Air Separation Processes Based on Exergy Analysis," Energies, MDPI, vol. 13(23), pages 1-20, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Haris Hamayun & Naveed Ramzan & Murid Hussain & Muhammad Faheem, 2021. "Reply to Variny et al. Comment on “Hamayun et al. Evaluation of Two-Column Air Separation Processes Based on Exergy Analysis. Energies 2020, 13 , 6361”," Energies, MDPI, vol. 14(20), pages 1-5, October.
    2. Farea Asif & Muhammad Haris Hamayun & Murid Hussain & Arif Hussain & Ibrahim M. Maafa & Young-Kwon Park, 2021. "Performance Analysis of the Perhydro-Dibenzyl-Toluene Dehydrogenation System—A Simulation Study," Sustainability, MDPI, vol. 13(11), pages 1-14, June.
    3. Miroslav Variny & Dominika Jediná & Miroslav Rimár & Ján Kizek & Marianna Kšiňanová, 2021. "Cutting Oxygen Production-Related Greenhouse Gas Emissions by Improved Compression Heat Management in a Cryogenic Air Separation Unit," IJERPH, MDPI, vol. 18(19), pages 1-32, October.
    4. Kazemi, Abolghasem & Moreno, Jovita & Iribarren, Diego, 2022. "Techno-economic comparison of optimized natural gas combined cycle power plants with CO2 capture," Energy, Elsevier, vol. 255(C).
    5. Miroslav Variny & Dominika Jediná & Patrik Furda, 2021. "Comment on Hamayun et al. Evaluation of Two-Column Air Separation Processes Based on Exergy Analysis. Energies 2020, 13 , 6361," Energies, MDPI, vol. 14(20), pages 1-8, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjopen:v:6:y:2023:i:2:p:23-341:d:1162903. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.