IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i11p6490-d570337.html
   My bibliography  Save this article

Performance Analysis of the Perhydro-Dibenzyl-Toluene Dehydrogenation System—A Simulation Study

Author

Listed:
  • Farea Asif

    (Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore 54000, Pakistan)

  • Muhammad Haris Hamayun

    (Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore 54000, Pakistan)

  • Murid Hussain

    (Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore 54000, Pakistan)

  • Arif Hussain

    (Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore 54000, Pakistan)

  • Ibrahim M. Maafa

    (Department of Chemical Engineering, College of Engineering, Jazan University, Jazan 45142, Saudi Arabia)

  • Young-Kwon Park

    (School of Environmental Engineering, University of Seoul, Dongdaemun-Gu 02504, Korea)

Abstract

The depletion of conventional energy resources has drawn the world’s attention towards the use of alternate energy resources, which are not only efficient but sustainable as well. For this purpose, hydrogen is considered the fuel of the future. Liquid organic hydrogen carriers (LOHCs) have proved themselves as a potential option for the release and storage of hydrogen. The present study is aimed to analyze the performance of the perhydro-dibenzyl-toluene (PDBT) dehydrogenation system, for the release of hydrogen, under various operational conditions, i.e., temperature range of 270–320 °C, pressure range of 1–3 bar, and various platinum/palladium-based catalysts. For the operational system, the optimum operating conditions selected are 320 °C and 2 bar, and 2 wt. % Pt/Al 2 O 3 as a suitable catalyst. The configuration is analyzed based on exergy analysis i.e., % exergy efficiency, and exergy destruction rate (kW), and two optimization strategies are developed using principles of process integration. Based on exergy analysis, strategy # 2, where the product’s heat is utilized to preheat the feed, and utilities consumption is minimized, is selected as the most suitable option for the dehydrogenation system. The process is simulated and optimized using Aspen HYSYS ® V10.

Suggested Citation

  • Farea Asif & Muhammad Haris Hamayun & Murid Hussain & Arif Hussain & Ibrahim M. Maafa & Young-Kwon Park, 2021. "Performance Analysis of the Perhydro-Dibenzyl-Toluene Dehydrogenation System—A Simulation Study," Sustainability, MDPI, vol. 13(11), pages 1-14, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:6490-:d:570337
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/11/6490/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/11/6490/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kaushik, S.C. & Reddy, V. Siva & Tyagi, S.K., 2011. "Energy and exergy analyses of thermal power plants: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1857-1872, May.
    2. Perwez, Usama & Sohail, Ahmed & Hassan, Syed Fahad & Zia, Usman, 2015. "The long-term forecast of Pakistan's electricity supply and demand: An application of long range energy alternatives planning," Energy, Elsevier, vol. 93(P2), pages 2423-2435.
    3. Fikrt, André & Brehmer, Richard & Milella, Vito-Oronzo & Müller, Karsten & Bösmann, Andreas & Preuster, Patrick & Alt, Nicolas & Schlücker, Eberhard & Wasserscheid, Peter & Arlt, Wolfgang, 2017. "Dynamic power supply by hydrogen bound to a liquid organic hydrogen carrier," Applied Energy, Elsevier, vol. 194(C), pages 1-8.
    4. Purna Chandra Rao & Minyoung Yoon, 2020. "Potential Liquid-Organic Hydrogen Carrier (LOHC) Systems: A Review on Recent Progress," Energies, MDPI, vol. 13(22), pages 1-23, November.
    5. Muhammad Haris Hamayun & Ibrahim M. Maafa & Murid Hussain & Rabya Aslam, 2020. "Simulation Study to Investigate the Effects of Operational Conditions on Methylcyclohexane Dehydrogenation for Hydrogen Production," Energies, MDPI, vol. 13(1), pages 1-15, January.
    6. Muhammad Haris Hamayun & Naveed Ramzan & Murid Hussain & Muhammad Faheem, 2020. "Evaluation of Two-Column Air Separation Processes Based on Exergy Analysis," Energies, MDPI, vol. 13(23), pages 1-20, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hoang, Anh Tuan & Pandey, Ashok & Martinez De Osés, Francisco Javier & Chen, Wei-Hsin & Said, Zafar & Ng, Kim Hoong & Ağbulut, Ümit & Tarełko, Wiesław & Ölçer, Aykut I. & Nguyen, Xuan Phuong, 2023. "Technological solutions for boosting hydrogen role in decarbonization strategies and net-zero goals of world shipping: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhan Xu & Ning Zhao & Stuart Hillmansen & Clive Roberts & Yan Yan, 2022. "Techno-Economic Analysis of Hydrogen Storage Technologies for Railway Engineering: A Review," Energies, MDPI, vol. 15(17), pages 1-22, September.
    2. Joakim Andersson, 2021. "Application of Liquid Hydrogen Carriers in Hydrogen Steelmaking," Energies, MDPI, vol. 14(5), pages 1-26, March.
    3. Byun, Manhee & Choe, Changgwon & Cheon, Seunghyun & Lee, Aejin & Lim, Hankwon, 2022. "Statistical and stochastic feasibility studies of potential liquid organic hydrogen carriers in a membrane reactor for simultaneous hydrogen storage and production: Technical, economic, and environmen," Renewable Energy, Elsevier, vol. 195(C), pages 1393-1411.
    4. Fangyi Li & Zhaoyang Ye & Xilin Xiao & Dawei Ma, 2019. "Environmental Benefits of Stock Evolution of Coal-Fired Power Generators in China," Sustainability, MDPI, vol. 11(19), pages 1-17, October.
    5. Juangsa, Firman Bagja & Prananto, Lukman Adi & Mufrodi, Zahrul & Budiman, Arief & Oda, Takuya & Aziz, Muhammad, 2018. "Highly energy-efficient combination of dehydrogenation of methylcyclohexane and hydrogen-based power generation," Applied Energy, Elsevier, vol. 226(C), pages 31-38.
    6. Ju-Yeol Ryu & Sungho Park & Changhyeong Lee & Seonghyeon Hwang & Jongwoong Lim, 2023. "Techno-Economic Analysis of Hydrogen–Natural Gas Blended Fuels for 400 MW Combined Cycle Power Plants (CCPPs)," Energies, MDPI, vol. 16(19), pages 1-19, September.
    7. Hong, Sanghyun & Kim, Eunsung & Jeong, Saerok, 2023. "Evaluating the sustainability of the hydrogen economy using multi-criteria decision-making analysis in Korea," Renewable Energy, Elsevier, vol. 204(C), pages 485-492.
    8. Josip Orović & Vedran Mrzljak & Igor Poljak, 2018. "Efficiency and Losses Analysis of Steam Air Heater from Marine Steam Propulsion Plant," Energies, MDPI, vol. 11(11), pages 1-18, November.
    9. Michael L. Carty & Stephane Bilodeau, 2023. "Benchmarking Thermodynamic Models for Optimization of PSA Oxygen Generators," J, MDPI, vol. 6(2), pages 1-24, June.
    10. Alina E. Kozhukhova & Stephanus P. du Preez & Dmitri G. Bessarabov, 2021. "Catalytic Hydrogen Combustion for Domestic and Safety Applications: A Critical Review of Catalyst Materials and Technologies," Energies, MDPI, vol. 14(16), pages 1-32, August.
    11. Fukunaga, Akihiko & Kato, Asami & Hara, Yuki & Matsumoto, Takaya, 2023. "Dehydrogenation of methylcyclohexane using solid oxide fuel cell – A smart energy conversion," Applied Energy, Elsevier, vol. 348(C).
    12. Muhammad Haris Hamayun & Naveed Ramzan & Murid Hussain & Muhammad Faheem, 2021. "Reply to Variny et al. Comment on “Hamayun et al. Evaluation of Two-Column Air Separation Processes Based on Exergy Analysis. Energies 2020, 13 , 6361”," Energies, MDPI, vol. 14(20), pages 1-5, October.
    13. Duan, Wenqi & Khurshid, Adnan & Nazir, Naila & Khan, Khalid & Calin, Adrian Cantemir, 2022. "From gray to green: Energy crises and the role of CPEC," Renewable Energy, Elsevier, vol. 190(C), pages 188-207.
    14. Muhammad Aziz, 2021. "Liquid Hydrogen: A Review on Liquefaction, Storage, Transportation, and Safety," Energies, MDPI, vol. 14(18), pages 1-29, September.
    15. Baghsheikhi, Mostafa & Sayyaadi, Hoseyn, 2016. "Real-time exergoeconomic optimization of a steam power plant using a soft computing-fuzzy inference system," Energy, Elsevier, vol. 114(C), pages 868-884.
    16. Reddy, V. Siva & Kaushik, S.C. & Tyagi, S.K., 2012. "Exergetic analysis and performance evaluation of parabolic trough concentrating solar thermal power plant (PTCSTPP)," Energy, Elsevier, vol. 39(1), pages 258-273.
    17. Luis Rivera-González & David Bolonio & Luis F. Mazadiego & Robert Valencia-Chapi, 2019. "Long-Term Electricity Supply and Demand Forecast (2018–2040): A LEAP Model Application towards a Sustainable Power Generation System in Ecuador," Sustainability, MDPI, vol. 11(19), pages 1-19, September.
    18. Ranjan, K.R. & Kaushik, S.C., 2014. "Thermodynamic and economic feasibility of solar ponds for various thermal applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 123-139.
    19. Fontina Petrakopoulou & Marina Olmeda-Delgado, 2019. "Studying the Reduction of Water Use in Integrated Solar Combined-Cycle Plants," Sustainability, MDPI, vol. 11(7), pages 1-27, April.
    20. Muhammad Haris Hamayun & Naveed Ramzan & Murid Hussain & Muhammad Faheem, 2020. "Evaluation of Two-Column Air Separation Processes Based on Exergy Analysis," Energies, MDPI, vol. 13(23), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:6490-:d:570337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.