IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v29y2004i12p2109-2124.html
   My bibliography  Save this article

Biomass integrated gasification combined cycle with reduced CO2 emissions: Performance analysis and life cycle assessment (LCA)

Author

Listed:
  • Corti, Andrea
  • Lombardi, Lidia

Abstract

Performance analysis and life cycle assessment (LCA) of an integrated gasification combined cycle (IGCC) fed with biomass with upstream CO2 chemical absorption has been carried out. The main working conditions have been determined by mean of partial exergetic analysis. A sensitivity analysis with respect to the CO2 absorbing solution composition has also been carried out. The reachable efficiency ranges between 35% and 36%, depending on gas turbine technology level. In comparison with efficiency values previously found for an IGCC fed with coal with upstream CO2 chemical absorption (38–39%), the configuration studied seems to be attractive because of the possibility of operating with a simplified scheme (without H2S removal process) and at atmospheric pressure and for the possibility of using biomass in a more efficient way with respect to conventional combustion systems. Due to the lower efficiency, the specific CO2 emission results higher (170 kg/MW h) with respect to the cycle fed with coal and CO2 removal (130 kg/MW h). Moreover, the CO2 balance has been determined with respect to the entire life cycle of the plant, including the construction, operation, dismantling and the biomass growing phases.

Suggested Citation

  • Corti, Andrea & Lombardi, Lidia, 2004. "Biomass integrated gasification combined cycle with reduced CO2 emissions: Performance analysis and life cycle assessment (LCA)," Energy, Elsevier, vol. 29(12), pages 2109-2124.
  • Handle: RePEc:eee:energy:v:29:y:2004:i:12:p:2109-2124
    DOI: 10.1016/j.energy.2004.03.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544204000933
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2004.03.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert S. Frazier & Enze Jin & Ajay Kumar, 2015. "Life Cycle Assessment of Biochar versus Metal Catalysts Used in Syngas Cleaning," Energies, MDPI, vol. 8(1), pages 1-24, January.
    2. Mukherjee, C. & Denney, J. & Mbonimpa, E.G. & Slagley, J. & Bhowmik, R., 2020. "A review on municipal solid waste-to-energy trends in the USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    3. Blengini, G.A. & Brizio, E. & Cibrario, M. & Genon, G., 2011. "LCA of bioenergy chains in Piedmont (Italy): A case study to support public decision makers towards sustainability," Resources, Conservation & Recycling, Elsevier, vol. 57(C), pages 36-47.
    4. Tock, Laurence & Maréchal, François, 2012. "Co-production of hydrogen and electricity from lignocellulosic biomass: Process design and thermo-economic optimization," Energy, Elsevier, vol. 45(1), pages 339-349.
    5. Saharudin, Djasmine Mastisya & Jeswani, Harish Kumar & Azapagic, Adisa, 2023. "Bioenergy with carbon capture and storage (BECSS): Life cycle environmental and economic assessment of electricity generated from palm oil wastes," Applied Energy, Elsevier, vol. 349(C).
    6. Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
    7. Krzysztof Pikoń & Piotr Krawczyk & Krzysztof Badyda & Magdalena Bogacka, 2019. "Predictive Analysis of Waste Co-Combustion with Fossil Fuels Using the Life Cycle Assessment (LCA) Methodology," Energies, MDPI, vol. 12(19), pages 1-11, September.
    8. Boukis, Ioannis & Vassilakos, Nikos & Karellas, Sotirios & Kakaras, Emmanuel, 2009. "Techno-economic analysis of the energy exploitation of biomass residues in Heraklion Prefecture--Crete," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 362-377, February.
    9. Wang, Changbo & Zhang, Lixiao & Chang, Yuan & Pang, Mingyue, 2015. "Biomass direct-fired power generation system in China: An integrated energy, GHG emissions, and economic evaluation for Salix," Energy Policy, Elsevier, vol. 84(C), pages 155-165.
    10. Miroslav Variny & Dominika Jediná & Patrik Furda, 2021. "Comment on Hamayun et al. Evaluation of Two-Column Air Separation Processes Based on Exergy Analysis. Energies 2020, 13 , 6361," Energies, MDPI, vol. 14(20), pages 1-8, October.
    11. Xiang, Yanlei & Cai, Lei & Guan, Yanwen & Liu, Wenbin & He, Tianzhi & Li, Juan, 2019. "Study on the biomass-based integrated gasification combined cycle with negative CO2 emissions under different temperatures and pressures," Energy, Elsevier, vol. 179(C), pages 571-580.
    12. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2010. "Sustainability considerations for electricity generation from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1419-1427, June.
    13. Ardolino, Filomena & Lodato, Concetta & Astrup, Thomas F. & Arena, Umberto, 2018. "Energy recovery from plastic and biomass waste by means of fluidized bed gasification: A life cycle inventory model," Energy, Elsevier, vol. 165(PB), pages 299-314.
    14. Lausselet, Carine & Cherubini, Francesco & Oreggioni, Gabriel David & del Alamo Serrano, Gonzalo & Becidan, Michael & Hu, Xiangping & Rørstad, Per Kr. & Strømman, Anders Hammer, 2017. "Norwegian Waste-to-Energy: Climate change, circular economy and carbon capture and storage," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 50-61.
    15. Ren, Siyue & Feng, Xiao & Wang, Yufei, 2021. "Emergy evaluation of the integrated gasification combined cycle power generation systems with a carbon capture system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    16. Schakel, Wouter & Meerman, Hans & Talaei, Alireza & Ramírez, Andrea & Faaij, André, 2014. "Comparative life cycle assessment of biomass co-firing plants with carbon capture and storage," Applied Energy, Elsevier, vol. 131(C), pages 441-467.
    17. Varun & Bhat, I.K. & Prakash, Ravi, 2009. "LCA of renewable energy for electricity generation systems--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1067-1073, June.
    18. González, Arnau & Riba, Jordi-Roger & Puig, Rita & Navarro, Pere, 2015. "Review of micro- and small-scale technologies to produce electricity and heat from Mediterranean forests׳ wood chips," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 143-155.
    19. Weldu, Yemane W., 2017. "Life cycle human health and ecosystem quality implication of biomass-based strategies to climate change mitigation," Renewable Energy, Elsevier, vol. 108(C), pages 11-18.
    20. Tanwar, Surender Singh & Khatod, D.K., 2017. "Techno-economic and environmental approach for optimal placement and sizing of renewable DGs in distribution system," Energy, Elsevier, vol. 127(C), pages 52-67.
    21. Jiang, Peng & Parvez, Ashak Mahmud & Meng, Yang & Xu, Meng-xia & Shui, Tian-chi & Sun, Cheng-gong & Wu, Tao, 2019. "Exergetic, economic and carbon emission studies of bio-olefin production via indirect steam gasification process," Energy, Elsevier, vol. 187(C).
    22. Wang, Lijun & Agyemang, Samuel A. & Amini, Hossein & Shahbazi, Abolghasem, 2015. "Mathematical modeling of production and biorefinery of energy crops," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 530-544.
    23. Islas, Jorge & Manzini, Fabio & Masera, Omar, 2007. "A prospective study of bioenergy use in Mexico," Energy, Elsevier, vol. 32(12), pages 2306-2320.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:29:y:2004:i:12:p:2109-2124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.