IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p5015-d615024.html
   My bibliography  Save this article

Beyond the Diffusion of Residential Solar Photovoltaic Systems at Scale: Allegorising the Battery Energy Storage Adoption Behaviour

Author

Listed:
  • Mohammad Alipour

    (School of Engineering and Built Environment, Griffith University, Southport, QLD 4222, Australia
    Cities Research Institute, Griffith University, Southport, QLD 4222, Australia)

  • Rodney A. Stewart

    (School of Engineering and Built Environment, Griffith University, Southport, QLD 4222, Australia
    Cities Research Institute, Griffith University, Southport, QLD 4222, Australia)

  • Oz Sahin

    (School of Engineering and Built Environment, Griffith University, Southport, QLD 4222, Australia
    Cities Research Institute, Griffith University, Southport, QLD 4222, Australia
    Griffith Climate Change Response Program, Griffith University, Southport, QLD 4222, Australia)

Abstract

Understanding the residential adoption decision of battery energy storage systems (BESSs) is central to the implementation of successful intervention policies. However, when the residential solar photovoltaics (PV) becomes a widely accepted technology across a society, accurately modelling the behaviour shows a higher degree of complexity. In this vein, the uptake pathway of BESS and PV coupled with BESS (PV–BESS) would predictably exhibit similar attitudinal traits to that of PV consumption. This notion implies that the antecedent PV decision can be regarded as the past behaviour of the BESS adopter by creating attitudinal implications. The PV use status also yields a higher degree of heterogeneity through the emergence of four new household groups and the inherent imbalances in the involvement of the interwoven financial, technical, sociodemographic, and psychological predictors. This perspective employs the Reasoned Action Approach (RAA) to allegorise a decision-making model of BESS and PV–BESS adoption behaviour in a mature PV market (Australia). It argues that the particularised background factors will likely shape the individual’s attitudes and perceived norms for intention, and showcases affordability and the use of PV as the two control components that dictate the final decision.

Suggested Citation

  • Mohammad Alipour & Rodney A. Stewart & Oz Sahin, 2021. "Beyond the Diffusion of Residential Solar Photovoltaic Systems at Scale: Allegorising the Battery Energy Storage Adoption Behaviour," Energies, MDPI, vol. 14(16), pages 1-12, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5015-:d:615024
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/5015/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/5015/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Herbert Simon, 2000. "Bounded rationality in social science: Today and tomorrow," Mind & Society: Cognitive Studies in Economics and Social Sciences, Springer;Fondazione Rosselli, vol. 1(1), pages 25-39, March.
    2. Best, Rohan & Li, Han & Trück, Stefan & Truong, Chi, 2021. "Actual uptake of home batteries: The key roles of capital and policy," Energy Policy, Elsevier, vol. 151(C).
    3. Ajzen, Icek, 1991. "The theory of planned behavior," Organizational Behavior and Human Decision Processes, Elsevier, vol. 50(2), pages 179-211, December.
    4. Scott Agnew & Paul Dargusch, 2015. "Effect of residential solar and storage on centralized electricity supply systems," Nature Climate Change, Nature, vol. 5(4), pages 315-318, April.
    5. Martin Fishbein, 2008. "A Reasoned Action Approach to Health Promotion," Medical Decision Making, , vol. 28(6), pages 834-844, November.
    6. Reeves, D.C. & Rai, V., 2018. "Strike while the rebate is hot: Savvy consumers and strategic technology adoption timing," Energy Policy, Elsevier, vol. 121(C), pages 325-335.
    7. Bondio, Steven & Shahnazari, Mahdi & McHugh, Adam, 2018. "The technology of the middle class: Understanding the fulfilment of adoption intentions in Queensland's rapid uptake residential solar photovoltaics market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 642-651.
    8. Say, Kelvin & John, Michele, 2021. "Molehills into mountains: Transitional pressures from household PV-battery adoption under flat retail and feed-in tariffs," Energy Policy, Elsevier, vol. 152(C).
    9. Hannie Zang & JongWon Kim, 2021. "Reinforcement Learning Based Peer-to-Peer Energy Trade Management Using Community Energy Storage in Local Energy Market," Energies, MDPI, vol. 14(14), pages 1-18, July.
    10. Alipour, M. & Salim, H. & Stewart, Rodney A. & Sahin, Oz, 2020. "Predictors, taxonomy of predictors, and correlations of predictors with the decision behaviour of residential solar photovoltaics adoption: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    11. Agnew, Scott & Dargusch, Paul, 2017. "Consumer preferences for household-level battery energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 609-617.
    12. White, Lee V., 2019. "Increasing residential solar installations in California: Have local permitting processes historically driven differences between cities?," Energy Policy, Elsevier, vol. 124(C), pages 46-53.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alipour, M. & Irannezhad, Elnaz & Stewart, Rodney A. & Sahin, Oz, 2022. "Exploring residential solar PV and battery energy storage adoption motivations and barriers in a mature PV market," Renewable Energy, Elsevier, vol. 190(C), pages 684-698.
    2. Qi Huang & Aihua Jiang & Yu Zeng & Jianan Xu, 2022. "Community Flexible Load Dispatching Model Based on Herd Mentality," Energies, MDPI, vol. 15(13), pages 1-18, June.
    3. Alipour, Mohammad & Taghikhah, Firouzeh & Irannezhad, Elnaz & Stewart, Rodney A. & Sahin, Oz, 2022. "How the decision to accept or reject PV affects the behaviour of residential battery system adopters," Applied Energy, Elsevier, vol. 318(C).
    4. Ludwik Wicki & Robert Pietrzykowski & Dariusz Kusz, 2022. "Factors Determining the Development of Prosumer Photovoltaic Installations in Poland," Energies, MDPI, vol. 15(16), pages 1-19, August.
    5. Nikita Dmitrievich Senchilo & Denis Anatolievich Ustinov, 2021. "Method for Determining the Optimal Capacity of Energy Storage Systems with a Long-Term Forecast of Power Consumption," Energies, MDPI, vol. 14(21), pages 1-25, October.
    6. Sara Ghaboulian Zare & Reza Hafezi & Mohammad Alipour & Reza Parsaei Tabar & Rodney A. Stewart, 2021. "Residential Solar Water Heater Adoption Behaviour: A Review of Economic and Technical Predictors and Their Correlation with the Adoption Decision," Energies, MDPI, vol. 14(20), pages 1-26, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alipour, Mohammad & Taghikhah, Firouzeh & Irannezhad, Elnaz & Stewart, Rodney A. & Sahin, Oz, 2022. "How the decision to accept or reject PV affects the behaviour of residential battery system adopters," Applied Energy, Elsevier, vol. 318(C).
    2. Alipour, M. & Salim, H. & Stewart, Rodney A. & Sahin, Oz, 2020. "Predictors, taxonomy of predictors, and correlations of predictors with the decision behaviour of residential solar photovoltaics adoption: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    3. Emily Schulte & Fabian Scheller & Daniel Sloot & Thomas Bruckner, 2021. "A meta-analysis of residential PV adoption: the important role of perceived benefits, intentions and antecedents in solar energy acceptance," Papers 2112.12464, arXiv.org.
    4. Alipour, M. & Irannezhad, Elnaz & Stewart, Rodney A. & Sahin, Oz, 2022. "Exploring residential solar PV and battery energy storage adoption motivations and barriers in a mature PV market," Renewable Energy, Elsevier, vol. 190(C), pages 684-698.
    5. Wichsinee Wibulpolprasert & Umnouy Ponsukcharoen & Siripha Junlakarn & Sopitsuda Tongsopit, 2021. "Preliminarily Screening Geographical Hotspots for New Rooftop PV Installation: A Case Study in Thailand," Energies, MDPI, vol. 14(11), pages 1-30, June.
    6. Say, Kelvin & John, Michele, 2021. "Molehills into mountains: Transitional pressures from household PV-battery adoption under flat retail and feed-in tariffs," Energy Policy, Elsevier, vol. 152(C).
    7. Best, Rohan & Chareunsy, Andrea, 2022. "The impact of income on household solar panel uptake: Exploring diverse results using Australian data," Energy Economics, Elsevier, vol. 112(C).
    8. Best, Rohan & Chareunsy, Andrea & Taylor, Madeline, 2023. "Changes in inequality for solar panel uptake by Australian homeowners," Ecological Economics, Elsevier, vol. 209(C).
    9. Esplin, Ryan & Nelson, Tim, 2022. "Redirecting solar feed in tariffs to residential battery storage: Would it be worth it?," Economic Analysis and Policy, Elsevier, vol. 73(C), pages 373-389.
    10. Best, Rohan, 2023. "Assets power solar and battery uptake in Kenya," Energy Economics, Elsevier, vol. 123(C).
    11. Nurwidiana Nurwidiana & Bertha Maya Sopha & Adhika Widyaparaga, 2022. "Simulating Socio-Technical Transitions of Photovoltaics Using Empirically Based Hybrid Simulation-Optimization Approach," Sustainability, MDPI, vol. 14(9), pages 1-25, April.
    12. Best, Rohan & Marrone, Mauricio & Linnenluecke, Martina, 2023. "Meta-analysis of the role of equity dimensions in household solar panel adoption," Ecological Economics, Elsevier, vol. 206(C).
    13. Eben Upton & William J. Nuttall, 2013. "Fuel Panics: insights from spatial agent-based simulation," Working Papers EPRG 1305, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    14. Quynh Anh Nguyen & Luc Hens & Charlotte MacAlister & Lester Johnson & Boripat Lebel & Sinh Bach Tan & Hung Manh Nguyen & The Ninh Nguyen & Louis Lebel, 2018. "Theory of Reasoned Action as a Framework for Communicating Climate Risk: A Case Study of Schoolchildren in the Mekong Delta in Vietnam," Sustainability, MDPI, vol. 10(6), pages 1-14, June.
    15. Esther Hoffmann & Franziska Mohaupt, 2020. "Joint Storage: A Mixed-Method Analysis of Consumer Perspectives on Community Energy Storage in Germany," Energies, MDPI, vol. 13(11), pages 1-22, June.
    16. Emily Schulte & Fabian Scheller & Wilmer Pasut & Thomas Bruckner, 2021. "Product traits, decision-makers, and household low-carbon technology adoptions: moving beyond single empirical studies," Papers 2112.11867, arXiv.org.
    17. Collier, Samuel H.C. & House, Jo I. & Connor, Peter M. & Harris, Richard, 2023. "Distributed local energy: Assessing the determinants of domestic-scale solar photovoltaic uptake at the local level across England and Wales," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    18. Frank Beckenbach & Ramón Briegel, 2010. "Multi-agent modeling of economic innovation dynamics and its implications for analyzing emission impacts," International Economics and Economic Policy, Springer, vol. 7(2), pages 317-341, August.
    19. Ambrosio-Albala, P. & Upham, P. & Bale, C.S.E. & Taylor, P.G., 2020. "Exploring acceptance of decentralised energy storage at household and neighbourhood scales: A UK survey," Energy Policy, Elsevier, vol. 138(C).
    20. Samal Kaliyeva & Francisco Jose Areal & Yiorgos Gadanakis, 2020. "Attitudes of Kazakh Rural Households towards Joining and Creating Cooperatives," Agriculture, MDPI, vol. 10(11), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5015-:d:615024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.