IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i8p1993-d346914.html
   My bibliography  Save this article

On Distributional Effects in Local Electricity Market Designs—Evidence from a German Case Study

Author

Listed:
  • Alexandra Lüth

    (Copenhagen School of Energy Infrastructure (CSEI), Copenhagen Business School (CBS), Porcelænshaven 16 A, 2000 Frederiksberg, Denmark)

  • Jens Weibezahn

    (Workgroup for Infrastructure Policy (WIP), Technische Universität Berlin, Sekr. H 33, Straße des 17. Juni 135, 10623 Berlin, Germany)

  • Jan Martin Zepter

    (Center for Electric Power and Energy (CEE), Technical University of Denmark (DTU), Frederiksborgvej 399, 4000 Roskilde, Denmark)

Abstract

The European Commission’s call for energy communities has motivated academia to focus research on design and trading concepts of local electricity markets. The literature provides a wide range of conceptual ideas and analyses on the technical and economic framework of single market features such as peer-to-peer trading. The feasible, system-wide integration of energy communities into existing market structures requires, however, a set of legal adjustments to national regulation. In this paper, we test the implications of recently proposed market designs under the current rules in the context of the German market. The analysis is facilitated by a simplistic equilibrium model representing heterogeneous market participants in an energy community with their respective objectives. We find that, on the one hand, these proposed designs are financially unattractive to prosumers and consumers under the current regulatory framework. On the other hand, they even cause distributional effects within the community when local trade and self-consumption are exempt from taxes. To this end, we introduce a novel market design— Tech4all —that counterbalances these effects. With only few legal amendments, it allows for ownership and participation of renewable technologies for all community members independent of their property structure and affluence. Our presented analysis shows that this design has the potential to mitigate both distributional effects and the avoidance of system service charges, while simultaneously increasing end-user participation.

Suggested Citation

  • Alexandra Lüth & Jens Weibezahn & Jan Martin Zepter, 2020. "On Distributional Effects in Local Electricity Market Designs—Evidence from a German Case Study," Energies, MDPI, vol. 13(8), pages 1-26, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:1993-:d:346914
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/8/1993/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/8/1993/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Steven A. Gabriel & Antonio J. Conejo & J. David Fuller & Benjamin F. Hobbs & Carlos Ruiz, 2013. "Complementarity Modeling in Energy Markets," International Series in Operations Research and Management Science, Springer, edition 127, number 978-1-4419-6123-5, March.
    2. Egging, Ruud & Holz, Franziska & Gabriel, Steven A., 2010. "The World Gas Model," Energy, Elsevier, vol. 35(10), pages 4016-4029.
    3. Mengelkamp, Esther & Gärttner, Johannes & Rock, Kerstin & Kessler, Scott & Orsini, Lawrence & Weinhardt, Christof, 2018. "Designing microgrid energy markets," Applied Energy, Elsevier, vol. 210(C), pages 870-880.
    4. Hall, Lisa M.H. & Buckley, Alastair R., 2016. "A review of energy systems models in the UK: Prevalent usage and categorisation," Applied Energy, Elsevier, vol. 169(C), pages 607-628.
    5. Huppmann, Daniel & Egging, Ruud, 2014. "Market power, fuel substitution and infrastructure – A large-scale equilibrium model of global energy markets," Energy, Elsevier, vol. 75(C), pages 483-500.
    6. Yael Parag & Benjamin K. Sovacool, 2016. "Electricity market design for the prosumer era," Nature Energy, Nature, vol. 1(4), pages 1-6, April.
    7. Egerer, Jonas & Weibezahn, Jens & Hermann, Hauke, 2016. "Two price zones for the German electricity market — Market implications and distributional effects," Energy Economics, Elsevier, vol. 59(C), pages 365-381.
    8. Wolf-Peter Schill & Claudia Kemfert, 2011. "Modeling Strategic Electricity Storage: The Case of Pumped Hydro Storage in Germany," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 59-88.
    9. Egging-Bratseth, Ruud & Baltensperger, Tobias & Tomasgard, Asgeir, 2020. "Solving oligopolistic equilibrium problems with convex optimization," European Journal of Operational Research, Elsevier, vol. 284(1), pages 44-52.
    10. Ferris, Michael C. & Munson, Todd S., 2000. "Complementarity problems in GAMS and the PATH solver," Journal of Economic Dynamics and Control, Elsevier, vol. 24(2), pages 165-188, February.
    11. Michael G. Pollitt, 2018. "Electricity Network Charging in the Presence of Distributed Energy Resources: Principles, Problems and Solutions," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    12. Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
    13. Ottesen, Stig Ødegaard & Tomasgard, Asgeir & Fleten, Stein-Erik, 2016. "Prosumer bidding and scheduling in electricity markets," Energy, Elsevier, vol. 94(C), pages 828-843.
    14. Correa-Florez, Carlos Adrian & Michiorri, Andrea & Kariniotakis, Georges, 2018. "Robust optimization for day-ahead market participation of smart-home aggregators," Applied Energy, Elsevier, vol. 229(C), pages 433-445.
    15. Hahnel, Ulf J.J. & Herberz, Mario & Pena-Bello, Alejandro & Parra, David & Brosch, Tobias, 2020. "Becoming prosumer: Revealing trading preferences and decision-making strategies in peer-to-peer energy communities," Energy Policy, Elsevier, vol. 137(C).
    16. Sousa, Tiago & Soares, Tiago & Pinson, Pierre & Moret, Fabio & Baroche, Thomas & Sorin, Etienne, 2019. "Peer-to-peer and community-based markets: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 367-378.
    17. Thomas Morstyn & Niall Farrell & Sarah J. Darby & Malcolm D. McCulloch, 2018. "Using peer-to-peer energy-trading platforms to incentivize prosumers to form federated power plants," Nature Energy, Nature, vol. 3(2), pages 94-101, February.
    18. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    19. Eid, Cherrelle & Bollinger, L. Andrew & Koirala, Binod & Scholten, Daniel & Facchinetti, Emanuele & Lilliestam, Johan & Hakvoort, Rudi, 2016. "Market integration of local energy systems: Is local energy management compatible with European regulation for retail competition?," Energy, Elsevier, vol. 114(C), pages 913-922.
    20. Lüth, Alexandra & Zepter, Jan Martin & Crespo del Granado, Pedro & Egging, Ruud, 2018. "Local electricity market designs for peer-to-peer trading: The role of battery flexibility," Applied Energy, Elsevier, vol. 229(C), pages 1233-1243.
    21. Ottesen, Stig Ødegaard & Tomasgard, Asgeir & Fleten, Stein-Erik, 2018. "Multi market bidding strategies for demand side flexibility aggregators in electricity markets," Energy, Elsevier, vol. 149(C), pages 120-134.
    22. Zhang, Chenghua & Wu, Jianzhong & Zhou, Yue & Cheng, Meng & Long, Chao, 2018. "Peer-to-Peer energy trading in a Microgrid," Applied Energy, Elsevier, vol. 220(C), pages 1-12.
    23. Brown, Donal & Hall, Stephen & Davis, Mark E., 2019. "Prosumers in the post subsidy era: an exploration of new prosumer business models in the UK," Energy Policy, Elsevier, vol. 135(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olivier Rebenaque & Carlo Schmitt & Klemens Schumann, 2022. "Trading in local markets: A review of concepts and challenges," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2022(2), pages 25-47.
    2. Aikaterini Forouli & Emmanouil A. Bakirtzis & Georgios Papazoglou & Konstantinos Oureilidis & Vasileios Gkountis & Luisa Candido & Eloi Delgado Ferrer & Pandelis Biskas, 2021. "Assessment of Demand Side Flexibility in European Electricity Markets: A Country Level Review," Energies, MDPI, vol. 14(8), pages 1-23, April.
    3. Di Silvestre, Maria Luisa & Ippolito, Mariano Giuseppe & Sanseverino, Eleonora Riva & Sciumè, Giuseppe & Vasile, Antony, 2021. "Energy self-consumers and renewable energy communities in Italy: New actors of the electric power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Vineet Jagadeesan Nair & Venkatesh Venkataramanan & Rabab Haider & Anuradha Annaswamy, 2021. "A Hierarchical Local Electricity Market for a DER-rich Grid Edge," Papers 2110.02358, arXiv.org, revised Mar 2022.
    5. Lissy Langer, 2020. "An Optimal Peer-to-Peer Market Considering Modulating Heat Pumps and Photovoltaic Systems under the German Levy Regime," Energies, MDPI, vol. 13(20), pages 1-25, October.
    6. Jens Maiwald & Tino Schuette, 2021. "Decentralised Electricity Markets and Proactive Customer Behaviour," Energies, MDPI, vol. 14(3), pages 1-27, February.
    7. Mehdi Montakhabi & Fairouz Zobiri & Shenja van der Graaf & Geert Deconinck & Domenico Orlando & Pieter Ballon & Mustafa A. Mustafa, 2021. "An Ecosystem View of Peer-to-Peer Electricity Trading: Scenario Building by Business Model Matrix to Identify New Roles," Energies, MDPI, vol. 14(15), pages 1-22, July.
    8. Schmitt, Carlo & Schumann, Klemens & Kollenda, Katharina & Blank, Andreas & Rebenaque, Olivier & Dronne, Théo & Martin, Arnault & Vassilopoulos, Philippe & Roques, Fabien & Moser, Albert, 2022. "How will local energy markets influence the pan-European day-ahead market and transmission systems? A case study for local markets in France and Germany," Applied Energy, Elsevier, vol. 325(C).
    9. Min Fu & Zhiyu Xu & Ning Wang & Xiaoyu Lyu & Weisheng Xu, 2020. "“Peer-to-Peer Plus” Electricity Transaction within Community of Active Energy Agents Regarding Distribution Network Constraints," Energies, MDPI, vol. 13(9), pages 1-23, May.
    10. Jakub Jasiński & Mariusz Kozakiewicz & Maciej Sołtysik, 2021. "Determinants of Energy Cooperatives’ Development in Rural Areas—Evidence from Poland," Energies, MDPI, vol. 14(2), pages 1-19, January.
    11. Markus Doepfert & Soner Candas & Hermann Kraus & Peter Tzscheutschler & Thomas Hamacher, 2024. "Assessing the techno-economic benefits of LEMs for different grid topologies and prosumer shares," Papers 2410.13330, arXiv.org.
    12. Arnob Das & Susmita Datta Peu & Md. Abdul Mannan Akanda & Abu Reza Md. Towfiqul Islam, 2023. "Peer-to-Peer Energy Trading Pricing Mechanisms: Towards a Comprehensive Analysis of Energy and Network Service Pricing (NSP) Mechanisms to Get Sustainable Enviro-Economical Energy Sector," Energies, MDPI, vol. 16(5), pages 1-27, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siripha Junlakarn & Phimsupha Kokchang & Kulyos Audomvongseree, 2022. "Drivers and Challenges of Peer-to-Peer Energy Trading Development in Thailand," Energies, MDPI, vol. 15(3), pages 1-25, February.
    2. Karami, Mahdi & Madlener, Reinhard, 2022. "Business models for peer-to-peer energy trading in Germany based on households’ beliefs and preferences," Applied Energy, Elsevier, vol. 306(PB).
    3. Faia, Ricardo & Lezama, Fernando & Soares, João & Pinto, Tiago & Vale, Zita, 2024. "Local electricity markets: A review on benefits, barriers, current trends and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    4. Dynge, Marthe Fogstad & Crespo del Granado, Pedro & Hashemipour, Naser & Korpås, Magnus, 2021. "Impact of local electricity markets and peer-to-peer trading on low-voltage grid operations," Applied Energy, Elsevier, vol. 301(C).
    5. Ableitner, Liliane & Tiefenbeck, Verena & Meeuw, Arne & Wörner, Anselma & Fleisch, Elgar & Wortmann, Felix, 2020. "User behavior in a real-world peer-to-peer electricity market," Applied Energy, Elsevier, vol. 270(C).
    6. Kobashi, Takuro & Yoshida, Takahiro & Yamagata, Yoshiki & Naito, Katsuhiko & Pfenninger, Stefan & Say, Kelvin & Takeda, Yasuhiro & Ahl, Amanda & Yarime, Masaru & Hara, Keishiro, 2020. "On the potential of “Photovoltaics + Electric vehicles” for deep decarbonization of Kyoto’s power systems: Techno-economic-social considerations," Applied Energy, Elsevier, vol. 275(C).
    7. Capper, Timothy & Gorbatcheva, Anna & Mustafa, Mustafa A. & Bahloul, Mohamed & Schwidtal, Jan Marc & Chitchyan, Ruzanna & Andoni, Merlinda & Robu, Valentin & Montakhabi, Mehdi & Scott, Ian J. & Franci, 2022. "Peer-to-peer, community self-consumption, and transactive energy: A systematic literature review of local energy market models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    8. Castellini, Marta & Di Corato, Luca & Moretto, Michele & Vergalli, Sergio, 2021. "Energy exchange among heterogeneous prosumers under price uncertainty," Energy Economics, Elsevier, vol. 104(C).
    9. Javier Parra-Domínguez & Esteban Sánchez & Ángel Ordóñez, 2023. "The Prosumer: A Systematic Review of the New Paradigm in Energy and Sustainable Development," Sustainability, MDPI, vol. 15(13), pages 1-44, July.
    10. Schwidtal, J.M. & Piccini, P. & Troncia, M. & Chitchyan, R. & Montakhabi, M. & Francis, C. & Gorbatcheva, A. & Capper, T. & Mustafa, M.A. & Andoni, M. & Robu, V. & Bahloul, M. & Scott, I.J. & Mbavarir, 2023. "Emerging business models in local energy markets: A systematic review of peer-to-peer, community self-consumption, and transactive energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    11. López, Iraide & Goitia-Zabaleta, Nerea & Milo, Aitor & Gómez-Cornejo, Julen & Aranzabal, Itxaso & Gaztañaga, Haizea & Fernandez, Elvira, 2024. "European energy communities: Characteristics, trends, business models and legal framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    12. Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
    13. Maarten Wolsink, 2020. "Framing in Renewable Energy Policies: A Glossary," Energies, MDPI, vol. 13(11), pages 1-31, June.
    14. Francesca Andreolli & Chiara D'Alpaos & Peter Kort, 2023. "Does P2P Trading Favor Investments in PV-Battery Systems?," Working Papers 2023.02, Fondazione Eni Enrico Mattei.
    15. Seyedhossein, Seyed Saeed & Moeini-Aghtaie, Moein, 2022. "Risk management framework of peer-to-peer electricity markets," Energy, Elsevier, vol. 261(PB).
    16. Zhou, Yue & Wu, Jianzhong & Song, Guanyu & Long, Chao, 2020. "Framework design and optimal bidding strategy for ancillary service provision from a peer-to-peer energy trading community," Applied Energy, Elsevier, vol. 278(C).
    17. Guerrero, Jaysson & Gebbran, Daniel & Mhanna, Sleiman & Chapman, Archie C. & Verbič, Gregor, 2020. "Towards a transactive energy system for integration of distributed energy resources: Home energy management, distributed optimal power flow, and peer-to-peer energy trading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    18. Sophie Adams & Donal Brown & Juan Pablo Cárdenas Álvarez & Ruzanna Chitchyan & Michael J. Fell & Ulf J. J. Hahnel & Kristina Hojckova & Charlotte Johnson & Lurian Klein & Mehdi Montakhabi & Kelvin Say, 2021. "Social and Economic Value in Emerging Decentralized Energy Business Models: A Critical Review," Energies, MDPI, vol. 14(23), pages 1-29, November.
    19. Henri van Soest, 2018. "Peer-to-peer electricity trading: A review of the legal context," Competition and Regulation in Network Industries, , vol. 19(3-4), pages 180-199, September.
    20. Neves, Diana & Scott, Ian & Silva, Carlos A., 2020. "Peer-to-peer energy trading potential: An assessment for the residential sector under different technology and tariff availabilities," Energy, Elsevier, vol. 205(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:1993-:d:346914. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.