IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2110.02358.html
   My bibliography  Save this paper

A Hierarchical Local Electricity Market for a DER-rich Grid Edge

Author

Listed:
  • Vineet Jagadeesan Nair
  • Venkatesh Venkataramanan
  • Rabab Haider
  • Anuradha Annaswamy

Abstract

With increasing penetration of DERs in the distribution system, it is critical to design market structures that enable smooth integration of DERs. A hierarchical local electricity market (LEM) structure is proposed in this paper with a secondary market (SM) at the lower level representing secondary feeders and a primary market (PM) at the upper level, representing primary feeders, in order to effectively use DERs to increase grid efficiency and resilience. The lower level SM enforces budget, power balance and flexibility constraints and accounts for costs related to consumers, such as their disutility, flexibility limits, and commitment reliability, while the upper level PM enforces power physics constraints such as power balance and capacity limits, and also minimizes line losses. The hierarchical LEM is extensively evaluated using a modified IEEE-123 bus with high DER penetration, with each primary feeder consisting of at least three secondary feeders. Data from a GridLAB-D model is used to emulate realistic power injections and load profiles over the course of 24 hours. The performance of the LEM is illustrated by delineating the family of power-injection profiles across the primary and secondary feeders as well as corresponding local electricity tariffs that vary across the distribution grid. Together, it represents an overall framework for a Distribution System Operator (DSO) who can provide the oversight for the entire LEM.

Suggested Citation

  • Vineet Jagadeesan Nair & Venkatesh Venkataramanan & Rabab Haider & Anuradha Annaswamy, 2021. "A Hierarchical Local Electricity Market for a DER-rich Grid Edge," Papers 2110.02358, arXiv.org, revised Mar 2022.
  • Handle: RePEc:arx:papers:2110.02358
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2110.02358
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexandra Lüth & Jens Weibezahn & Jan Martin Zepter, 2020. "On Distributional Effects in Local Electricity Market Designs—Evidence from a German Case Study," Energies, MDPI, vol. 13(8), pages 1-26, April.
    2. Mengelkamp, Esther & Gärttner, Johannes & Rock, Kerstin & Kessler, Scott & Orsini, Lawrence & Weinhardt, Christof, 2018. "Designing microgrid energy markets," Applied Energy, Elsevier, vol. 210(C), pages 870-880.
    3. Olivella-Rosell, Pol & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Sumper, Andreas & Ottesen, Stig Ødegaard & Vidal-Clos, Josep-Andreu & Villafáfila-Robles, Roberto, 2018. "Optimization problem for meeting distribution system operator requests in local flexibility markets with distributed energy resources," Applied Energy, Elsevier, vol. 210(C), pages 881-895.
    4. Eid, Cherrelle & Reneses Guillén, Javier & Frías Marín, Pablo & Hakvoort, Rudi, 2014. "The economic effect of electricity net-metering with solar PV: Consequences for network cost recovery, cross subsidies and policy objectives," Energy Policy, Elsevier, vol. 75(C), pages 244-254.
    5. Hvelplund, Frede, 2006. "Renewable energy and the need for local energy markets," Energy, Elsevier, vol. 31(13), pages 2293-2302.
    6. Sousa, Tiago & Soares, Tiago & Pinson, Pierre & Moret, Fabio & Baroche, Thomas & Sorin, Etienne, 2019. "Peer-to-peer and community-based markets: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 367-378.
    7. Picciariello, Angela & Vergara, Claudio & Reneses, Javier & Frías, Pablo & Söder, Lennart, 2015. "Electricity distribution tariffs and distributed generation: Quantifying cross-subsidies from consumers to prosumers," Utilities Policy, Elsevier, vol. 37(C), pages 23-33.
    8. Fernando E. Postigo Marcos & Carlos Mateo Domingo & Tomás Gómez San Román & Bryan Palmintier & Bri-Mathias Hodge & Venkat Krishnan & Fernando De Cuadra García & Barry Mather, 2017. "A Review of Power Distribution Test Feeders in the United States and the Need for Synthetic Representative Networks," Energies, MDPI, vol. 10(11), pages 1-14, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olivier Rebenaque & Carlo Schmitt & Klemens Schumann, 2022. "Trading in local markets: A review of concepts and challenges," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2022(2), pages 25-47.
    2. Nieta, Agustín A. Sánchez de la & Ilieva, Iliana & Gibescu, Madeleine & Bremdal, Bernt & Simonsen, Stig & Gramme, Eivind, 2021. "Optimal midterm peak shaving cost in an electricity management system using behind customers’ smart meter configuration," Applied Energy, Elsevier, vol. 283(C).
    3. Capper, Timothy & Gorbatcheva, Anna & Mustafa, Mustafa A. & Bahloul, Mohamed & Schwidtal, Jan Marc & Chitchyan, Ruzanna & Andoni, Merlinda & Robu, Valentin & Montakhabi, Mehdi & Scott, Ian J. & Franci, 2022. "Peer-to-peer, community self-consumption, and transactive energy: A systematic literature review of local energy market models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    4. Mengelkamp, Esther & Schlund, David & Weinhardt, Christof, 2019. "Development and real-world application of a taxonomy for business models in local energy markets," Applied Energy, Elsevier, vol. 256(C).
    5. Faia, Ricardo & Lezama, Fernando & Soares, João & Pinto, Tiago & Vale, Zita, 2024. "Local electricity markets: A review on benefits, barriers, current trends and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    6. Dudjak, Viktorija & Neves, Diana & Alskaif, Tarek & Khadem, Shafi & Pena-Bello, Alejandro & Saggese, Pietro & Bowler, Benjamin & Andoni, Merlinda & Bertolini, Marina & Zhou, Yue & Lormeteau, Blanche &, 2021. "Impact of local energy markets integration in power systems layer: A comprehensive review," Applied Energy, Elsevier, vol. 301(C).
    7. Mukherjee, Monish & Hardy, Trevor & Fuller, Jason C. & Bose, Anjan, 2022. "Implementing multi-settlement decentralized electricity market design for transactive communities with imperfect communication," Applied Energy, Elsevier, vol. 306(PA).
    8. Kirchhoff, Hannes & Strunz, Kai, 2019. "Key drivers for successful development of peer-to-peer microgrids for swarm electrification," Applied Energy, Elsevier, vol. 244(C), pages 46-62.
    9. Moura, Ricardo & Brito, Miguel Centeno, 2019. "Prosumer aggregation policies, country experience and business models," Energy Policy, Elsevier, vol. 132(C), pages 820-830.
    10. Christoph Schick & Nikolai Klempp & Kai Hufendiek, 2021. "Impact of Network Charge Design in an Energy System with Large Penetration of Renewables and High Prosumer Shares," Energies, MDPI, vol. 14(21), pages 1-26, October.
    11. Castaneda, Monica & Jimenez, Maritza & Zapata, Sebastian & Franco, Carlos J. & Dyner, Isaac, 2017. "Myths and facts of the utility death spiral," Energy Policy, Elsevier, vol. 110(C), pages 105-116.
    12. Ma, Li & Wang, Lingfeng & Liu, Zhaoxi, 2021. "Multi-level trading community formation and hybrid trading network construction in local energy market," Applied Energy, Elsevier, vol. 285(C).
    13. Savelli, Iacopo & Morstyn, Thomas, 2021. "Electricity prices and tariffs to keep everyone happy: A framework for fixed and nodal prices coexistence in distribution grids with optimal tariffs for investment cost recovery," Omega, Elsevier, vol. 103(C).
    14. Gayo-Abeleira, Miguel & Santos, Carlos & Javier Rodríguez Sánchez, Francisco & Martín, Pedro & Antonio Jiménez, José & Santiso, Enrique, 2022. "Aperiodic two-layer energy management system for community microgrids based on blockchain strategy," Applied Energy, Elsevier, vol. 324(C).
    15. Maarten Wolsink, 2020. "Framing in Renewable Energy Policies: A Glossary," Energies, MDPI, vol. 13(11), pages 1-31, June.
    16. Yuki Matsuda & Yuto Yamazaki & Hiromu Oki & Yasuhiro Takeda & Daishi Sagawa & Kenji Tanaka, 2021. "Demonstration of Blockchain Based Peer to Peer Energy Trading System with Real-Life Used PHEV and HEMS Charge Control," Energies, MDPI, vol. 14(22), pages 1-12, November.
    17. Tushar, Wayes & Saha, Tapan Kumar & Yuen, Chau & Azim, M. Imran & Morstyn, Thomas & Poor, H. Vincent & Niyato, Dustin & Bean, Richard, 2020. "A coalition formation game framework for peer-to-peer energy trading," Applied Energy, Elsevier, vol. 261(C).
    18. Botelho, D.F. & de Oliveira, L.W. & Dias, B.H. & Soares, T.A. & Moraes, C.A., 2022. "Prosumer integration into the Brazilian energy sector: An overview of innovative business models and regulatory challenges," Energy Policy, Elsevier, vol. 161(C).
    19. Cortade, Thomas & Poudou, Jean-Christophe, 2022. "Peer-to-peer energy platforms: Incentives for prosuming," Energy Economics, Elsevier, vol. 109(C).
    20. Soto, Esteban A. & Bosman, Lisa B. & Wollega, Ebisa & Leon-Salas, Walter D., 2021. "Peer-to-peer energy trading: A review of the literature," Applied Energy, Elsevier, vol. 283(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2110.02358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.