IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i19p5144-d423081.html
   My bibliography  Save this article

Establishing Energy Efficiency—Drivers for Energy Efficiency in German Manufacturing Small- and Medium-Sized Enterprises

Author

Listed:
  • Werner König

    (REZ—Reutlingen Energy Center for Distributed Energy Systems and Energy Efficiency, Reutlingen University, 72762 Reutlingen, Germany)

  • Sabine Löbbe

    (REZ—Reutlingen Energy Center for Distributed Energy Systems and Energy Efficiency, Reutlingen University, 72762 Reutlingen, Germany)

  • Stefan Büttner

    (EEP—Institute for Energy Efficiency in Production, University of Stuttgart, 70569 Stuttgart, Germany)

  • Christian Schneider

    (EEP—Institute for Energy Efficiency in Production, University of Stuttgart, 70569 Stuttgart, Germany)

Abstract

Despite strong political efforts in Europe, industrial small- and medium-sized enterprises (SMEs) seem to neglect adopting practices for energy efficiency. By taking a cultural perspective, this study investigated what drives the establishment of energy efficiency and corresponding practices in SMEs. Based on 10 ethnographic case studies and a quantitative survey among 500 manufacturing SMEs, the results indicate the importance of everyday employee behavior in achieving energy savings. The studied enterprises value behavior-related measures as similarly important as technical measures. Raising awareness for energy issues within the organization, therefore, constitutes an essential leadership task that is oftentimes perceived as challenging and frustrating. It was concluded that the embedding of energy efficiency in corporate strategy, the use of a broad spectrum of different practices, and the empowerment and involvement of employees serve as major drivers in establishing energy efficiency within SMEs. Moreover, the findings reveal institutional influences on shaping the meanings of energy efficiency for the SMEs by raising attention for energy efficiency in the enterprises and making energy efficiency decisions more likely. The main contribution of the paper is to offer an alternative perspective on energy efficiency in SMEs beyond the mere adoption of energy-efficient technology.

Suggested Citation

  • Werner König & Sabine Löbbe & Stefan Büttner & Christian Schneider, 2020. "Establishing Energy Efficiency—Drivers for Energy Efficiency in German Manufacturing Small- and Medium-Sized Enterprises," Energies, MDPI, vol. 13(19), pages 1-31, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5144-:d:423081
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/19/5144/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/19/5144/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Perroni, Marcos G. & Gouvea da Costa, Sergio E. & Pinheiro de Lima, Edson & Vieira da Silva, Wesley, 2017. "The relationship between enterprise efficiency in resource use and energy efficiency practices adoption," International Journal of Production Economics, Elsevier, vol. 190(C), pages 108-119.
    2. Backlund, Sandra & Thollander, Patrik & Palm, Jenny & Ottosson, Mikael, 2012. "Extending the energy efficiency gap," Energy Policy, Elsevier, vol. 51(C), pages 392-396.
    3. Phylipsen, G. J. M. & Blok, K. & Worrell, E., 1997. "International comparisons of energy efficiency-Methodologies for the manufacturing industry," Energy Policy, Elsevier, vol. 25(7-9), pages 715-725.
    4. Fleiter, Tobias & Hirzel, Simon & Worrell, Ernst, 2012. "The characteristics of energy-efficiency measures – a neglected dimension," Energy Policy, Elsevier, vol. 51(C), pages 502-513.
    5. O'Malley, Eoin & Scott, Susan & Sorrell, Steve, 2003. "Barriers to Energy Efficiency: Evidence from Selected Sectors," Research Series, Economic and Social Research Institute (ESRI), number PRS47, June.
    6. Zierler, Rupert & Wehrmeyer, Walter & Murphy, Richard, 2017. "The energy efficiency behaviour of individuals in large organisations: A case study of a major UK infrastructure operator," Energy Policy, Elsevier, vol. 104(C), pages 38-49.
    7. Beatrice Marchi & Simone Zanoni, 2017. "Supply Chain Management for Improved Energy Efficiency: Review and Opportunities," Energies, MDPI, vol. 10(10), pages 1-29, October.
    8. Weber, Lukas, 1997. "Some reflections on barriers to the efficient use of energy," Energy Policy, Elsevier, vol. 25(10), pages 833-835, August.
    9. Fawcett, Tina & Hampton, Sam, 2020. "Why & how energy efficiency policy should address SMEs," Energy Policy, Elsevier, vol. 140(C).
    10. Costa-Campi, María Teresa & García-Quevedo, José & Segarra, Agustí, 2015. "Energy efficiency determinants: An empirical analysis of Spanish innovative firms," Energy Policy, Elsevier, vol. 83(C), pages 229-239.
    11. Trianni, A. & Cagno, E., 2012. "Dealing with barriers to energy efficiency and SMEs: Some empirical evidences," Energy, Elsevier, vol. 37(1), pages 494-504.
    12. Anderson, Soren T. & Newell, Richard G., 2004. "Information programs for technology adoption: the case of energy-efficiency audits," Resource and Energy Economics, Elsevier, vol. 26(1), pages 27-50, March.
    13. Thollander, Patrik & Backlund, Sandra & Trianni, Andrea & Cagno, Enrico, 2013. "Beyond barriers – A case study on driving forces for improved energy efficiency in the foundry industries in Finland, France, Germany, Italy, Poland, Spain, and Sweden," Applied Energy, Elsevier, vol. 111(C), pages 636-643.
    14. Stephenson, Janet & Barton, Barry & Carrington, Gerry & Gnoth, Daniel & Lawson, Rob & Thorsnes, Paul, 2010. "Energy cultures: A framework for understanding energy behaviours," Energy Policy, Elsevier, vol. 38(10), pages 6120-6129, October.
    15. Andrea Revell & David Stokes & Hsin Chen, 2010. "Small businesses and the environment: turning over a new leaf?," Business Strategy and the Environment, Wiley Blackwell, vol. 19(5), pages 273-288, July.
    16. Trianni, Andrea & Cagno, Enrico & Farné, Stefano, 2016. "Barriers, drivers and decision-making process for industrial energy efficiency: A broad study among manufacturing small and medium-sized enterprises," Applied Energy, Elsevier, vol. 162(C), pages 1537-1551.
    17. Gerarden, Todd G. & Newell, Richard G. & Stavins, Robert, 2015. "Addressing the Energy-Efficiency Gap," Working Paper Series rwp15-004, Harvard University, John F. Kennedy School of Government.
    18. William Ocasio, 1997. "Towards An Attention‐Based View Of The Firm," Strategic Management Journal, Wiley Blackwell, vol. 18(S1), pages 187-206, July.
    19. Cagno, Enrico & Trianni, Andrea, 2013. "Exploring drivers for energy efficiency within small- and medium-sized enterprises: First evidences from Italian manufacturing enterprises," Applied Energy, Elsevier, vol. 104(C), pages 276-285.
    20. Palm, Jenny & Thollander, Patrik, 2010. "An interdisciplinary perspective on industrial energy efficiency," Applied Energy, Elsevier, vol. 87(10), pages 3255-3261, October.
    21. Sarah Williams & Anja Schaefer, 2013. "Small and Medium‐Sized Enterprises and Sustainability: Managers' Values and Engagement with Environmental and Climate Change Issues," Business Strategy and the Environment, Wiley Blackwell, vol. 22(3), pages 173-186, March.
    22. Cagno, E. & Worrell, E. & Trianni, A. & Pugliese, G., 2013. "A novel approach for barriers to industrial energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 290-308.
    23. Trianni, Andrea & Cagno, Enrico & De Donatis, Alessio, 2014. "A framework to characterize energy efficiency measures," Applied Energy, Elsevier, vol. 118(C), pages 207-220.
    24. Fleiter, Tobias & Worrell, Ernst & Eichhammer, Wolfgang, 2011. "Barriers to energy efficiency in industrial bottom-up energy demand models--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3099-3111, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriel Nicolae Popa & Angela Iagăr & Corina Maria Diniș, 2020. "Considerations on Current and Voltage Unbalance of Nonlinear Loads in Residential and Educational Sectors," Energies, MDPI, vol. 14(1), pages 1-29, December.
    2. Mehdi Bensouda & Mimoun Benali, 2023. "The Role of Institutional Pressure and Dynamic Capabilities in Promoting Energy Efficiency Practices: Evidence from the Moroccan Manufacturing Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 13(1), pages 352-361, January.
    3. Urbano, Eva M. & Martinez-Viol, Victor & Kampouropoulos, Konstantinos & Romeral, Luis, 2022. "Risk assessment of energy investment in the industrial framework – Uncertainty and Sensitivity Analysis for energy design and operation optimisation," Energy, Elsevier, vol. 239(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mette Talseth Solnørdal & Lene Foss, 2018. "Closing the Energy Efficiency Gap—A Systematic Review of Empirical Articles on Drivers to Energy Efficiency in Manufacturing Firms," Energies, MDPI, vol. 11(3), pages 1-30, February.
    2. Solnørdal, Mette Talseth & Thyholdt, Sverre Braathen, 2019. "Absorptive capacity and energy efficiency in manufacturing firms – An empirical analysis in Norway," Energy Policy, Elsevier, vol. 132(C), pages 978-990.
    3. A S M Monjurul Hasan & Andrea Trianni, 2020. "A Review of Energy Management Assessment Models for Industrial Energy Efficiency," Energies, MDPI, vol. 13(21), pages 1-21, November.
    4. Trianni, Andrea & Cagno, Enrico & Farné, Stefano, 2016. "Barriers, drivers and decision-making process for industrial energy efficiency: A broad study among manufacturing small and medium-sized enterprises," Applied Energy, Elsevier, vol. 162(C), pages 1537-1551.
    5. Trianni, Andrea & Cagno, Enrico & Bertolotti, Matteo & Thollander, Patrik & Andersson, Elias, 2019. "Energy management: A practice-based assessment model," Applied Energy, Elsevier, vol. 235(C), pages 1614-1636.
    6. Andrea Trianni & Davide Accordini & Enrico Cagno, 2020. "Identification and Categorization of Factors Affecting the Adoption of Energy Efficiency Measures within Compressed Air Systems," Energies, MDPI, vol. 13(19), pages 1-51, October.
    7. Marlene Preiß, 2021. "Treiber und Hemmnisse betrieblicher Effizienzmaßnahmen – Vernetzung als Erfolgsfaktor [Drivers and barriers of operational efficiency measures—networking as a success factor]," NachhaltigkeitsManagementForum | Sustainability Management Forum, Springer, vol. 29(2), pages 93-106, June.
    8. Trianni, Andrea & Cagno, Enrico & Worrell, Ernst, 2013. "Innovation and adoption of energy efficient technologies: An exploratory analysis of Italian primary metal manufacturing SMEs," Energy Policy, Elsevier, vol. 61(C), pages 430-440.
    9. Hasan, A S M Monjurul & Tuhin, Rashedul Amin & Ullah, Mahfuz & Sakib, Taiyeb Hasan & Thollander, Patrik & Trianni, Andrea, 2021. "A comprehensive investigation of energy management practices within energy intensive industries in Bangladesh," Energy, Elsevier, vol. 232(C).
    10. Jafarzadeh, Sepideh & Utne, Ingrid Bouwer, 2014. "A framework to bridge the energy efficiency gap in shipping," Energy, Elsevier, vol. 69(C), pages 603-612.
    11. Thollander, Patrik & Backlund, Sandra & Trianni, Andrea & Cagno, Enrico, 2013. "Beyond barriers – A case study on driving forces for improved energy efficiency in the foundry industries in Finland, France, Germany, Italy, Poland, Spain, and Sweden," Applied Energy, Elsevier, vol. 111(C), pages 636-643.
    12. Trianni, Andrea & Cagno, Enrico & Accordini, Davide, 2019. "Energy efficiency measures in electric motors systems: A novel classification highlighting specific implications in their adoption," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    13. Apriani Soepardi & Pratikto Pratikto & Purnomo Budi Santoso & Ishardita Pambudi Tama & Patrik Thollander, 2018. "Linking of Barriers to Energy Efficiency Improvement in Indonesia’s Steel Industry," Energies, MDPI, vol. 11(1), pages 1-22, January.
    14. Olsthoorn, Mark & Schleich, Joachim & Hirzel, Simon, 2017. "Adoption of Energy Efficiency Measures for Non-residential Buildings: Technological and Organizational Heterogeneity in the Trade, Commerce and Services Sector," Ecological Economics, Elsevier, vol. 136(C), pages 240-254.
    15. Jalo, Noor & Johansson, Ida & Kanchiralla, Fayas Malik & Thollander, Patrik, 2021. "Do energy efficiency networks help reduce barriers to energy efficiency? -A case study of a regional Swedish policy program for industrial SMEs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    16. Perroni, Marcos G. & Gouvea da Costa, Sergio E. & Pinheiro de Lima, Edson & Vieira da Silva, Wesley & Tortato, Ubiratã, 2018. "Measuring energy performance: A process based approach," Applied Energy, Elsevier, vol. 222(C), pages 540-553.
    17. Perroni, Marcos G. & Gouvea da Costa, Sergio E. & Pinheiro de Lima, Edson & Vieira da Silva, Wesley, 2017. "The relationship between enterprise efficiency in resource use and energy efficiency practices adoption," International Journal of Production Economics, Elsevier, vol. 190(C), pages 108-119.
    18. May, Gökan & Stahl, Bojan & Taisch, Marco, 2016. "Energy management in manufacturing: Toward eco-factories of the future – A focus group study," Applied Energy, Elsevier, vol. 164(C), pages 628-638.
    19. Shi, Yingying & Zeng, Yongchao & Engo, Jean & Han, Botang & Li, Yang & Muehleisen, Ralph T., 2020. "Leveraging inter-firm influence in the diffusion of energy efficiency technologies: An agent-based model," Applied Energy, Elsevier, vol. 263(C).
    20. Safarzadeh, Soroush & Rasti-Barzoki, Morteza & Hejazi, Seyed Reza, 2020. "A review of optimal energy policy instruments on industrial energy efficiency programs, rebound effects, and government policies," Energy Policy, Elsevier, vol. 139(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5144-:d:423081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.