IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i19p5128-d422867.html
   My bibliography  Save this article

Demand Flexibility Enabled by Virtual Energy Storage to Improve Renewable Energy Penetration

Author

Listed:
  • Gabriele Fambri

    (Department of Energy, Politecnico di Torino, 10129 Torino, Italy)

  • Marco Badami

    (Department of Energy, Politecnico di Torino, 10129 Torino, Italy)

  • Dimosthenis Tsagkrasoulis

    (Hypertech Energy Labs, Hypertech SA, 15232 Chalandri, Greece)

  • Vasiliki Katsiki

    (Hypertech Energy Labs, Hypertech SA, 15232 Chalandri, Greece)

  • Georgios Giannakis

    (Hypertech Energy Labs, Hypertech SA, 15232 Chalandri, Greece)

  • Antonis Papanikolaou

    (Hypertech Energy Labs, Hypertech SA, 15232 Chalandri, Greece)

Abstract

The increasing resort to renewable energy distributed generation, which is needed to mitigate anthropogenic CO 2 emissions, leads to challenges concerning the proper operation of electric distribution systems. As a result of the intrinsic nature of Renewable Energy Sources (RESs), this generation shows a high volatility and a low predictability that make the balancing of energy production and consumption difficult. At the same time, the electrification of new energy-intensive sectors (such as heating) is expected. This complex scenario paves the way for new sources of flexibility that will have more and more relevance in the coming years. This paper analyses how the electrification of the heating system, combined with an electric flexibility utilisation module, can be used to mitigate the problems related to the fluctuating production of RES. By using Power-to-Heat (P2H) technologies, buildings are able to store the overproduction of RES in the form of thermal energy for end-use according to the principle of the so-called Virtual Energy Storage (VES). A context-aware demand flexibility extraction based on the VES model and the flexibility upscale and utilisation on district-level through grid simulation and energy flow optimisation is presented in the paper. The involved modules have been developed within the PLANET (PLAnning and operational tools for optimising energy flows and synergies between energy NETworks) H2020 European project and interact under a unified co-simulation framework with the PLANET Decision Support System (DSS) for the analysis of multi-energy scenarios. DSS has been used to simulate a realistic future energy scenario, according to which the imbalance problems triggered by RES overproduction are mitigated with the optimal exploitation of the demand flexibility enabled by VES.

Suggested Citation

  • Gabriele Fambri & Marco Badami & Dimosthenis Tsagkrasoulis & Vasiliki Katsiki & Georgios Giannakis & Antonis Papanikolaou, 2020. "Demand Flexibility Enabled by Virtual Energy Storage to Improve Renewable Energy Penetration," Energies, MDPI, vol. 13(19), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5128-:d:422867
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/19/5128/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/19/5128/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. De Luca, Giovanna & Ballarini, Ilaria & Lorenzati, Alice & Corrado, Vincenzo, 2020. "Renovation of a social house into a NZEB: Use of renewable energy sources and economic implications," Renewable Energy, Elsevier, vol. 159(C), pages 356-370.
    2. Cesar Diaz-Londono & Luigi Colangelo & Fredy Ruiz & Diego Patino & Carlo Novara & Gianfranco Chicco, 2019. "Optimal Strategy to Exploit the Flexibility of an Electric Vehicle Charging Station," Energies, MDPI, vol. 12(20), pages 1-29, October.
    3. Enescu, Diana, 2017. "A review of thermal comfort models and indicators for indoor environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1353-1379.
    4. Marco Badami & Gabriele Fambri & Salvatore Mancò & Mariapia Martino & Ioannis G. Damousis & Dimitrios Agtzidis & Dimitrios Tzovaras, 2019. "A Decision Support System Tool to Manage the Flexibility in Renewable Energy-Based Power Systems," Energies, MDPI, vol. 13(1), pages 1-16, December.
    5. Badami, Marco & Fambri, Gabriele, 2019. "Optimising energy flows and synergies between energy networks," Energy, Elsevier, vol. 173(C), pages 400-412.
    6. Mateusz Andrychowicz, 2020. "Comparison of the Use of Energy Storages and Energy Curtailment as an Addition to the Allocation of Renewable Energy in the Distribution System in Order to Minimize Development Costs," Energies, MDPI, vol. 13(14), pages 1-20, July.
    7. Malte Meinshausen & Nicolai Meinshausen & William Hare & Sarah C. B. Raper & Katja Frieler & Reto Knutti & David J. Frame & Myles R. Allen, 2009. "Greenhouse-gas emission targets for limiting global warming to 2 °C," Nature, Nature, vol. 458(7242), pages 1158-1162, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fahad Alismail & Mohamed A. Abdulgalil & Muhammad Khalid, 2021. "Optimal Coordinated Planning of Energy Storage and Tie-Lines to Boost Flexibility with High Wind Power Integration," Sustainability, MDPI, vol. 13(5), pages 1-17, February.
    2. Ji Chen & Qi Xu & Xinyu Luo & Angran Tian & Sujing Xu & Qiang Tang, 2022. "Safety Evaluation and Energy Consumption Analysis of Deep Foundation Pit Excavation through Numerical Simulation and In-Site Monitoring," Energies, MDPI, vol. 15(19), pages 1-14, September.
    3. Christian Pfeiffer & Markus Puchegger & Claudia Maier & Ina V. Tomaschitz & Thomas P. Kremsner & Lukas Gnam, 2020. "A Case Study of Socially-Accepted Potentials for the Use of End User Flexibility by Home Energy Management Systems," Sustainability, MDPI, vol. 13(1), pages 1-19, December.
    4. Fambri, Gabriele & Diaz-Londono, Cesar & Mazza, Andrea & Badami, Marco & Sihvonen, Teemu & Weiss, Robert, 2022. "Techno-economic analysis of Power-to-Gas plants in a gas and electricity distribution network system with high renewable energy penetration," Applied Energy, Elsevier, vol. 312(C).
    5. Zhang, Shixu & Li, Yaowang & Du, Ershun & Fan, Chuan & Wu, Zhenlong & Yao, Yong & Liu, Lurao & Zhang, Ning, 2023. "A review and outlook on cloud energy storage: An aggregated and shared utilizing method of energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Badami & Gabriele Fambri & Salvatore Mancò & Mariapia Martino & Ioannis G. Damousis & Dimitrios Agtzidis & Dimitrios Tzovaras, 2019. "A Decision Support System Tool to Manage the Flexibility in Renewable Energy-Based Power Systems," Energies, MDPI, vol. 13(1), pages 1-16, December.
    2. Fankhauser, Samuel & Hepburn, Cameron, 2010. "Designing carbon markets. Part I: Carbon markets in time," Energy Policy, Elsevier, vol. 38(8), pages 4363-4370, August.
    3. van den Bergh, J.C.J.M. & Botzen, W.J.W., 2015. "Monetary valuation of the social cost of CO2 emissions: A critical survey," Ecological Economics, Elsevier, vol. 114(C), pages 33-46.
    4. Simon Levin & Anastasios Xepapadeas, 2021. "On the Coevolution of Economic and Ecological Systems," Annual Review of Resource Economics, Annual Reviews, vol. 13(1), pages 355-377, October.
    5. Kriegler, Elmar, 2011. "Comment," Energy Economics, Elsevier, vol. 33(4), pages 594-596, July.
    6. Sam Fankhauser & Cameron Hepburn, 2009. "Carbon markets in space and time," GRI Working Papers 3, Grantham Research Institute on Climate Change and the Environment.
    7. Weth, Mark A. & Baltzer, Markus & Bertram, Christoph & Hilaire, Jérôme & Johnston, Craig, 2024. "The scenario-based equity price impact induced by greenhouse gas emissions," Discussion Papers 30/2024, Deutsche Bundesbank.
    8. van der Ploeg, Frederick & Rezai, Armon, 2017. "Cumulative emissions, unburnable fossil fuel, and the optimal carbon tax," Technological Forecasting and Social Change, Elsevier, vol. 116(C), pages 216-222.
    9. Waldemar Karpa & Antonio Grginović, 2021. "(Not So) Stranded: The Case of Coal in Poland," Energies, MDPI, vol. 14(24), pages 1-16, December.
    10. Colo, Philippe, 2021. "Cassandra's Curse: A Second Tragedy of the Commons," MPRA Paper 110878, University Library of Munich, Germany.
    11. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    12. Luiz Almeida & Ana Soares & Pedro Moura, 2023. "A Systematic Review of Optimization Approaches for the Integration of Electric Vehicles in Public Buildings," Energies, MDPI, vol. 16(13), pages 1-26, June.
    13. Malik Curuk & Suphi Sen, 2023. "Climate Policy and Resource Extraction with Variable Markups and Imperfect Substitutes," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 10(4), pages 1091-1120.
    14. Daniel Johansson, 2011. "Temperature stabilization, ocean heat uptake and radiative forcing overshoot profiles," Climatic Change, Springer, vol. 108(1), pages 107-134, September.
    15. Laeven, Luc & Popov, Alexander, 2023. "Carbon taxes and the geography of fossil lending," Journal of International Economics, Elsevier, vol. 144(C).
    16. Zhao, Jing & Yang, Zilan & Shi, Linyu & Liu, Dehan & Li, Haonan & Mi, Yumiao & Wang, Hongbin & Feng, Meili & Hutagaol, Timothy Joseph, 2024. "Photovoltaic capacity dynamic tracking model predictive control strategy of air-conditioning systems with consideration of flexible loads," Applied Energy, Elsevier, vol. 356(C).
    17. Jin Xue & Hans Jakob Walnum & Carlo Aall & Petter Næss, 2016. "Two Contrasting Scenarios for a Zero-Emission Future in a High-Consumption Society," Sustainability, MDPI, vol. 9(1), pages 1-25, December.
    18. Agliardi, Elettra & Xepapadeas, Anastasios, 2022. "Temperature targets, deep uncertainty and extreme events in the design of optimal climate policy," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
    19. Song Gao, 2015. "Managing short-lived climate forcers in curbing climate change: an atmospheric chemistry synopsis," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 5(2), pages 130-137, June.
    20. Trowell, K.A. & Goroshin, S. & Frost, D.L. & Bergthorson, J.M., 2020. "Aluminum and its role as a recyclable, sustainable carrier of renewable energy," Applied Energy, Elsevier, vol. 275(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5128-:d:422867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.