IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i14p3746-d387383.html
   My bibliography  Save this article

Comparison of the Use of Energy Storages and Energy Curtailment as an Addition to the Allocation of Renewable Energy in the Distribution System in Order to Minimize Development Costs

Author

Listed:
  • Mateusz Andrychowicz

    (Institute of Mechatronics and Information Systems, Lodz University of Technology, 90-924 Lodz, Poland)

Abstract

This paper presents a comparison of the efficiency of energy storage and energy curtailment as an addition to the allocation of renewable energy in the distribution system in order to minimize development costs using a Mixed Integer-Linear Programming (MILP). Energy sources and energy storages are selected, sized and allocated under operational circumstances such as grid congestions and weather conditions. Loads and power units are modeled by daily consumption and generation profiles respectively, to reflect the intermittent character of renewable generation and consumption of energy. The optimization is carried out for a one-year time horizon using twenty-four representative days. The method is verified on three main simulation scenarios and three sub-scenarios for each of them, allowing for the comparison of the efficiency of each used tool. The main scenarios differ in their share of energy from renewable energy sources (RES) in total consumption. In the sub-scenarios, different tools (RES sizing and allocation, energy storages (ES) sizing and allocation and energy curtailment) are used. The results of this research confirm that energy curtailment is a more efficient additional tool for RES sizing and allocation than energy storages. This method can find practical application for Distribution System Operators in elaborating grid development strategies.

Suggested Citation

  • Mateusz Andrychowicz, 2020. "Comparison of the Use of Energy Storages and Energy Curtailment as an Addition to the Allocation of Renewable Energy in the Distribution System in Order to Minimize Development Costs," Energies, MDPI, vol. 13(14), pages 1-20, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3746-:d:387383
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/14/3746/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/14/3746/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Doagou-Mojarrad, Hasan & Gharehpetian, G.B. & Rastegar, H. & Olamaei, Javad, 2013. "Optimal placement and sizing of DG (distributed generation) units in distribution networks by novel hybrid evolutionary algorithm," Energy, Elsevier, vol. 54(C), pages 129-138.
    2. Minh Quan Duong & Thai Dinh Pham & Thang Trung Nguyen & Anh Tuan Doan & Hai Van Tran, 2019. "Determination of Optimal Location and Sizing of Solar Photovoltaic Distribution Generation Units in Radial Distribution Systems," Energies, MDPI, vol. 12(1), pages 1-24, January.
    3. Luis Fernando Grisales-Noreña & Daniel Gonzalez Montoya & Carlos Andres Ramos-Paja, 2018. "Optimal Sizing and Location of Distributed Generators Based on PBIL and PSO Techniques," Energies, MDPI, vol. 11(4), pages 1-27, April.
    4. Suman Bhullar & Smarajit Ghosh, 2018. "Optimal Integration of Multi Distributed Generation Sources in Radial Distribution Networks Using a Hybrid Algorithm," Energies, MDPI, vol. 11(3), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriele Fambri & Marco Badami & Dimosthenis Tsagkrasoulis & Vasiliki Katsiki & Georgios Giannakis & Antonis Papanikolaou, 2020. "Demand Flexibility Enabled by Virtual Energy Storage to Improve Renewable Energy Penetration," Energies, MDPI, vol. 13(19), pages 1-20, October.
    2. Maciej Sołtysik & Karolina Mucha-Kuś & Jacek Kamiński, 2022. "The New Model of Energy Cluster Management and Functioning," Energies, MDPI, vol. 15(18), pages 1-18, September.
    3. Florian Schäfer & Martin Braun, 2020. "Multi-Year High-Voltage Power System Planning Considering Active Power Curtailment," Energies, MDPI, vol. 13(18), pages 1-15, September.
    4. Wojciech Czakon & Karolina Mucha-Kuś & Maciej Sołtysik, 2021. "Coopetitive Platform: Common Benefits in Electricity and Gas Distribution," Energies, MDPI, vol. 14(21), pages 1-18, November.
    5. Mateusz Andrychowicz, 2021. "The Impact of Energy Storage along with the Allocation of RES on the Reduction of Energy Costs Using MILP," Energies, MDPI, vol. 14(13), pages 1-15, June.
    6. Yusheng Sun & Yaqian Zhao & Zhifeng Dou & Yanyan Li & Leilei Guo, 2020. "Model Predictive Virtual Synchronous Control of Permanent Magnet Synchronous Generator-Based Wind Power System," Energies, MDPI, vol. 13(19), pages 1-14, September.
    7. Javier Contreras & Gregorio Muñoz-Delgado, 2021. "Distributed Power Generation Scheduling, Modeling, and Expansion Planning," Energies, MDPI, vol. 14(22), pages 1-2, November.
    8. Jakub Jasiński & Mariusz Kozakiewicz & Maciej Sołtysik, 2021. "The Effectiveness of Energy Cooperatives Operating on the Capacity Market," Energies, MDPI, vol. 14(11), pages 1-20, May.
    9. Bouthaina El Barkouki & Mohamed Laamim & Abdelilah Rochd & Jae-won Chang & Aboubakr Benazzouz & Mohammed Ouassaid & Moses Kang & Hakgeun Jeong, 2023. "An Economic Dispatch for a Shared Energy Storage System Using MILP Optimization: A Case Study of a Moroccan Microgrid," Energies, MDPI, vol. 16(12), pages 1-19, June.
    10. Chadly, Assia & Azar, Elie & Maalouf, Maher & Mayyas, Ahmad, 2022. "Techno-economic analysis of energy storage systems using reversible fuel cells and rechargeable batteries in green buildings," Energy, Elsevier, vol. 247(C).
    11. Mateusz Andrychowicz, 2021. "RES and ES Integration in Combination with Distribution Grid Development Using MILP," Energies, MDPI, vol. 14(2), pages 1-19, January.
    12. Krystian Siczek & Krzysztof Siczek & Piotr Piersa & Łukasz Adrian & Szymon Szufa & Andrzej Obraniak & Przemysław Kubiak & Wojciech Zakrzewicz & Grzegorz Bogusławski, 2020. "The Comparative Study on the Li-S and Li-ion Batteries Cooperating with the Photovoltaic Array," Energies, MDPI, vol. 13(19), pages 1-24, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahesh Kumar & Amir Mahmood Soomro & Waqar Uddin & Laveet Kumar, 2022. "Optimal Multi-Objective Placement and Sizing of Distributed Generation in Distribution System: A Comprehensive Review," Energies, MDPI, vol. 15(21), pages 1-48, October.
    2. Ghaeth Fandi & Ibrahim Ahmad & Famous O. Igbinovia & Zdenek Muller & Josef Tlusty & Vladimir Krepl, 2018. "Voltage Regulation and Power Loss Minimization in Radial Distribution Systems via Reactive Power Injection and Distributed Generation Unit Placement," Energies, MDPI, vol. 11(6), pages 1-17, May.
    3. Barik, Soumyabrata & Das, Debapriya, 2020. "A novel Q−PQV bus pair method of biomass DGs placement in distribution networks to maintain the voltage of remotely located buses," Energy, Elsevier, vol. 194(C).
    4. Aman, M.M. & Jasmon, G.B. & Bakar, A.H.A. & Mokhlis, H., 2014. "A new approach for optimum simultaneous multi-DG distributed generation Units placement and sizing based on maximization of system loadability using HPSO (hybrid particle swarm optimization) algorithm," Energy, Elsevier, vol. 66(C), pages 202-215.
    5. J. Rajalakshmi & S. Durairaj, 2021. "Application of multi-objective optimization algorithm for siting and sizing of distributed generations in distribution networks," Journal of Combinatorial Optimization, Springer, vol. 41(2), pages 267-289, February.
    6. Bornapour, Mosayeb & Hooshmand, Rahmat-Allah, 2015. "An efficient scenario-based stochastic programming for optimal planning of combined heat, power, and hydrogen production of molten carbonate fuel cell power plants," Energy, Elsevier, vol. 83(C), pages 734-748.
    7. Oscar Danilo Montoya & Walter Gil-González & Jesus C. Hernández, 2023. "Optimal Power Flow Solution for Bipolar DC Networks Using a Recursive Quadratic Approximation," Energies, MDPI, vol. 16(2), pages 1-17, January.
    8. Sachin Kumar & Kumari Sarita & Akanksha Singh S Vardhan & Rajvikram Madurai Elavarasan & R. K. Saket & Narottam Das, 2020. "Reliability Assessment of Wind-Solar PV Integrated Distribution System Using Electrical Loss Minimization Technique," Energies, MDPI, vol. 13(21), pages 1-30, October.
    9. Sultana, U. & Khairuddin, Azhar B. & Sultana, Beenish & Rasheed, Nadia & Qazi, Sajid Hussain & Malik, Nimra Riaz, 2018. "Placement and sizing of multiple distributed generation and battery swapping stations using grasshopper optimizer algorithm," Energy, Elsevier, vol. 165(PA), pages 408-421.
    10. Samson Oladayo Ayanlade & Funso Kehinde Ariyo & Abdulrasaq Jimoh & Kayode Timothy Akindeji & Adeleye Oluwaseye Adetunji & Emmanuel Idowu Ogunwole & Dolapo Eniola Owolabi, 2023. "Optimal Allocation of Photovoltaic Distributed Generations in Radial Distribution Networks," Sustainability, MDPI, vol. 15(18), pages 1-26, September.
    11. Singh, Pushpendra & Meena, Nand K. & Yang, Jin & Vega-Fuentes, Eduardo & Bishnoi, Shree Krishna, 2020. "Multi-criteria decision making monarch butterfly optimization for optimal distributed energy resources mix in distribution networks," Applied Energy, Elsevier, vol. 278(C).
    12. Andrés Alfonso Rosales-Muñoz & Luis Fernando Grisales-Noreña & Jhon Montano & Oscar Danilo Montoya & Alberto-Jesus Perea-Moreno, 2021. "Application of the Multiverse Optimization Method to Solve the Optimal Power Flow Problem in Direct Current Electrical Networks," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    13. Wooyoung Jeon & Chul-Yong Lee, 2019. "Estimating the Cost of Solar Generation Uncertainty and the Impact of Collocated Energy Storage: The Case of Korea," Sustainability, MDPI, vol. 11(5), pages 1-18, March.
    14. Prakash, Prem & Khatod, Dheeraj K., 2016. "Optimal sizing and siting techniques for distributed generation in distribution systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 111-130.
    15. José Adriano da Costa & David Alves Castelo Branco & Max Chianca Pimentel Filho & Manoel Firmino de Medeiros Júnior & Neilton Fidelis da Silva, 2019. "Optimal Sizing of Photovoltaic Generation in Radial Distribution Systems Using Lagrange Multipliers," Energies, MDPI, vol. 12(9), pages 1-19, May.
    16. Xin Yan & Qian Zhang, 2023. "Research on Combination of Distributed Generation Placement and Dynamic Distribution Network Reconfiguration Based on MIBWOA," Sustainability, MDPI, vol. 15(12), pages 1-34, June.
    17. Ramshani, Mohammad & Li, Xueping & Khojandi, Anahita & Omitaomu, Olufemi, 2020. "An agent-based approach to study the diffusion rate and the effect of policies on joint placement of photovoltaic panels and green roof under climate change uncertainty," Applied Energy, Elsevier, vol. 261(C).
    18. Dahai Zhang & Xiandong Ma & Yulin Si & Can Huang & Bin Huang & Wei Li, 2017. "Effect of Doubly Fed Induction GeneratorTidal Current Turbines on Stability of a Distribution Grid under Unbalanced Voltage Conditions," Energies, MDPI, vol. 10(2), pages 1-14, February.
    19. Oludamilare Bode Adewuyi & Ayooluwa Peter Adeagbo & Isaiah Gbadegesin Adebayo & Harun Or Rashid Howlader & Yanxia Sun, 2021. "Modified Analytical Approach for PV-DGs Integration into a Radial Distribution Network Considering Loss Sensitivity and Voltage Stability," Energies, MDPI, vol. 14(22), pages 1-20, November.
    20. Paschalis A. Gkaidatzis & Aggelos S. Bouhouras & Kallisthenis I. Sgouras & Dimitrios I. Doukas & Georgios C. Christoforidis & Dimitris P. Labridis, 2019. "Efficient RES Penetration under Optimal Distributed Generation Placement Approach," Energies, MDPI, vol. 12(7), pages 1-32, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3746-:d:387383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.