IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i16p8703-d608197.html
   My bibliography  Save this article

Application of the Multiverse Optimization Method to Solve the Optimal Power Flow Problem in Direct Current Electrical Networks

Author

Listed:
  • Andrés Alfonso Rosales-Muñoz

    (Grupo MATyER, Facultad de Ingeniería, Instituto Tecnológico Metropolitano, Campus Robledo, Medellín 050036, Colombia
    These authors contributed equally to this work.)

  • Luis Fernando Grisales-Noreña

    (Grupo MATyER, Facultad de Ingeniería, Instituto Tecnológico Metropolitano, Campus Robledo, Medellín 050036, Colombia
    These authors contributed equally to this work.)

  • Jhon Montano

    (Grupo MATyER, Facultad de Ingeniería, Instituto Tecnológico Metropolitano, Campus Robledo, Medellín 050036, Colombia
    These authors contributed equally to this work.)

  • Oscar Danilo Montoya

    (Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, Bogotá 110231, Colombia
    Laboratorio Inteligente de Energía, Universidad Tecnológica de Bolívar, Cartagena 131001, Colombia
    These authors contributed equally to this work.)

  • Alberto-Jesus Perea-Moreno

    (Departamento de Física Aplicada, Radiología y Medicina Física, Campus Universitario de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
    These authors contributed equally to this work.)

Abstract

This paper addresses the optimal power flow problem in direct current (DC) networks employing a master–slave solution methodology that combines an optimization algorithm based on the multiverse theory (master stage) and the numerical method of successive approximation (slave stage). The master stage proposes power levels to be injected by each distributed generator in the DC network, and the slave stage evaluates the impact of each power configuration (proposed by the master stage) on the objective function and the set of constraints that compose the problem. In this study, the objective function is the reduction of electrical power losses associated with energy transmission. In addition, the constraints are the global power balance, nodal voltage limits, current limits, and a maximum level of penetration of distributed generators. In order to validate the robustness and repeatability of the solution, this study used four other optimization methods that have been reported in the specialized literature to solve the problem addressed here: ant lion optimization, particle swarm optimization, continuous genetic algorithm, and black hole optimization algorithm. All of them employed the method based on successive approximation to solve the load flow problem (slave stage). The 21- and 69-node test systems were used for this purpose, enabling the distributed generators to inject 20 % , 40 % , and 60 % of the power provided by the slack node in a scenario without distributed generation. The results revealed that the multiverse optimizer offers the best solution quality and repeatability in networks of different sizes with several penetration levels of distributed power generation.

Suggested Citation

  • Andrés Alfonso Rosales-Muñoz & Luis Fernando Grisales-Noreña & Jhon Montano & Oscar Danilo Montoya & Alberto-Jesus Perea-Moreno, 2021. "Application of the Multiverse Optimization Method to Solve the Optimal Power Flow Problem in Direct Current Electrical Networks," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:8703-:d:608197
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/16/8703/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/16/8703/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lipowski, Adam & Lipowska, Dorota, 2012. "Roulette-wheel selection via stochastic acceptance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(6), pages 2193-2196.
    2. Luis Fernando Grisales-Noreña & Daniel Gonzalez Montoya & Carlos Andres Ramos-Paja, 2018. "Optimal Sizing and Location of Distributed Generators Based on PBIL and PSO Techniques," Energies, MDPI, vol. 11(4), pages 1-27, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luis Fernando Grisales-Noreña & Andrés Alfonso Rosales-Muñoz & Oscar Danilo Montoya, 2023. "An Effective Power Dispatch of Photovoltaic Generators in DC Networks via the Antlion Optimizer," Energies, MDPI, vol. 16(3), pages 1-28, January.
    2. Luis Fernando Grisales-Noreña & Andrés Alfonso Rosales-Muñoz & Brandon Cortés-Caicedo & Oscar Danilo Montoya & Fabio Andrade, 2022. "Optimal Operation of PV Sources in DC Grids for Improving Technical, Economical, and Environmental Conditions by Using Vortex Search Algorithm and a Matrix Hourly Power Flow," Mathematics, MDPI, vol. 11(1), pages 1-28, December.
    3. Luis Fernando Grisales-Noreña & Jauder Alexander Ocampo-Toro & Andrés Alfonso Rosales-Muñoz & Brandon Cortes-Caicedo & Oscar Danilo Montoya, 2022. "An Energy Management System for PV Sources in Standalone and Connected DC Networks Considering Economic, Technical, and Environmental Indices," Sustainability, MDPI, vol. 14(24), pages 1-25, December.
    4. Muhammad Riaz & Aamir Hanif & Haris Masood & Muhammad Attique Khan & Kamran Afaq & Byeong-Gwon Kang & Yunyoung Nam, 2021. "An Optimal Power Flow Solution of a System Integrated with Renewable Sources Using a Hybrid Optimizer," Sustainability, MDPI, vol. 13(23), pages 1-12, December.
    5. Daniel Sanin-Villa & Oscar Danilo Montoya & Luis Fernando Grisales-Noreña, 2023. "Material Property Characterization and Parameter Estimation of Thermoelectric Generator by Using a Master–Slave Strategy Based on Metaheuristics Techniques," Mathematics, MDPI, vol. 11(6), pages 1-19, March.
    6. Andrés Alfonso Rosales-Muñoz & Jhon Montano & Luis Fernando Grisales-Noreña & Oscar Danilo Montoya & Fabio Andrade, 2022. "Optimal Power Dispatch of DGs in Radial and Mesh AC Grids: A Hybrid Solution Methodology between the Salps Swarm Algorithm and Successive Approximation Power Flow Method," Sustainability, MDPI, vol. 14(20), pages 1-32, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Enming & Zhou, Zhongbao & Li, Ruiyang & Chang, Zhongxiang & Shi, Jianmai, 2024. "The multi-fleet delivery problem combined with trucks, tricycles, and drones for last-mile logistics efficiency requirements under multiple budget constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 187(C).
    2. Oscar Danilo Montoya & Walter Gil-González & Jesus C. Hernández, 2023. "Optimal Power Flow Solution for Bipolar DC Networks Using a Recursive Quadratic Approximation," Energies, MDPI, vol. 16(2), pages 1-17, January.
    3. Hu, Yusha & Li, Jigeng & Hong, Mengna & Ren, Jingzheng & Lin, Ruojue & Liu, Yue & Liu, Mengru & Man, Yi, 2019. "Short term electric load forecasting model and its verification for process industrial enterprises based on hybrid GA-PSO-BPNN algorithm—A case study of papermaking process," Energy, Elsevier, vol. 170(C), pages 1215-1227.
    4. Mehmet Burak Şenol & Ekrem Alper Murat, 2023. "A sequential solution heuristic for continuous facility layout problems," Annals of Operations Research, Springer, vol. 320(1), pages 355-377, January.
    5. Shanmugarajah Vinothine & Lidula N. Widanagama Arachchige & Athula D. Rajapakse & Roshani Kaluthanthrige, 2022. "Microgrid Energy Management and Methods for Managing Forecast Uncertainties," Energies, MDPI, vol. 15(22), pages 1-22, November.
    6. Mateusz Andrychowicz, 2021. "RES and ES Integration in Combination with Distribution Grid Development Using MILP," Energies, MDPI, vol. 14(2), pages 1-19, January.
    7. Shanxian Lin & Yifei Yang & Yuichi Nagata & Haichuan Yang, 2025. "Elite Evolutionary Discrete Particle Swarm Optimization for Recommendation Systems," Mathematics, MDPI, vol. 13(9), pages 1-36, April.
    8. Mahesh Kumar & Amir Mahmood Soomro & Waqar Uddin & Laveet Kumar, 2022. "Optimal Multi-Objective Placement and Sizing of Distributed Generation in Distribution System: A Comprehensive Review," Energies, MDPI, vol. 15(21), pages 1-48, October.
    9. Baowei Wang & Peng Zhao, 2020. "An Adaptive Image Watermarking Method Combining SVD and Wang-Landau Sampling in DWT Domain," Mathematics, MDPI, vol. 8(5), pages 1-20, May.
    10. Guo, Yuhan & Wang, Yiyang & Chen, Yuhan & Wu, Lingxiao & Mao, Wengang, 2024. "Learning-based Pareto-optimum routing of ships incorporating uncertain meteorological and oceanographic forecasts," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
    11. Luis Fernando Grisales-Noreña & Oscar Danilo Montoya & Ricardo Alberto Hincapié-Isaza & Mauricio Granada Echeverri & Alberto-Jesus Perea-Moreno, 2021. "Optimal Location and Sizing of DGs in DC Networks Using a Hybrid Methodology Based on the PPBIL Algorithm and the VSA," Mathematics, MDPI, vol. 9(16), pages 1-18, August.
    12. Fathy, Ahmed, 2022. "A novel artificial hummingbird algorithm for integrating renewable based biomass distributed generators in radial distribution systems," Applied Energy, Elsevier, vol. 323(C).
    13. Jinxin Wang & Zhongwei Wang & Xiuzhen Ma & Guojin Feng & Chi Zhang, 2020. "Locating Sensors in Complex Engineering Systems for Fault Isolation Using Population-Based Incremental Learning," Energies, MDPI, vol. 13(2), pages 1-14, January.
    14. Pascal P Klamser & Pawel Romanczuk, 2021. "Collective predator evasion: Putting the criticality hypothesis to the test," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-21, March.
    15. Nissim Amar & Aaron Shmaryahu & Michael Coletti & Ilan Aharon, 2021. "Sizing Procedure for System Hybridization Based on Experimental Source Modeling in Grid Application," Energies, MDPI, vol. 14(15), pages 1-19, August.
    16. Walter Gil-González & Oscar Danilo Montoya & Luis Fernando Grisales-Noreña & Alberto-Jesus Perea-Moreno & Quetzalcoatl Hernandez-Escobedo, 2020. "Optimal Placement and Sizing of Wind Generators in AC Grids Considering Reactive Power Capability and Wind Speed Curves," Sustainability, MDPI, vol. 12(7), pages 1-20, April.
    17. Maryam Dehghan Chenary & Arman Ferdowsi & Richard F. Hartl, 2024. "A Pareto-Based Clustering Approach for Solving a Bi-Objective Mobile Hub Location Problem with Congestion," Logistics, MDPI, vol. 8(4), pages 1-30, December.
    18. Oscar Danilo Montoya & Luis Fernando Grisales-Noreña & Alberto-Jesus Perea-Moreno, 2021. "Optimal Investments in PV Sources for Grid-Connected Distribution Networks: An Application of the Discrete–Continuous Genetic Algorithm," Sustainability, MDPI, vol. 13(24), pages 1-19, December.
    19. Ojer, Jaume & López, Álvaro G. & Used, Javier & Sanjuán, Miguel A.F., 2022. "A stochastic hybrid model with a fast concentration bias for chemotactic cellular attraction," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    20. Sun, Li & Liu, Like & Xu, Zhongzhi & Jie, Yang & Wei, Dong & Wang, Pu, 2015. "Locating inefficient links in a large-scale transportation network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 537-545.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:8703-:d:608197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.