IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i23p13382-d694076.html
   My bibliography  Save this article

An Optimal Power Flow Solution of a System Integrated with Renewable Sources Using a Hybrid Optimizer

Author

Listed:
  • Muhammad Riaz

    (Electrical Engineering Department, Wah Engineering College, University of Wah, Wah Cantt 47040, Pakistan)

  • Aamir Hanif

    (Electrical Engineering Department, Wah Engineering College, University of Wah, Wah Cantt 47040, Pakistan)

  • Haris Masood

    (Electrical Engineering Department, Wah Engineering College, University of Wah, Wah Cantt 47040, Pakistan)

  • Muhammad Attique Khan

    (Department of Mechanical Engineering, HITEC University Taxila, Taxila, Rawalpindi 47080, Pakistan)

  • Kamran Afaq

    (Department of Mechanical Engineering, HITEC University Taxila, Taxila, Rawalpindi 47080, Pakistan)

  • Byeong-Gwon Kang

    (Department of Information and Communication Engineering, Soonchunhyang University, Asan 31538, Korea)

  • Yunyoung Nam

    (Department of Computer Science and Engineering, Soonchunhyang University, Asan 31538, Korea)

Abstract

A solution to reduce the emission and generation cost of conventional fossil-fuel-based power generators is to integrate renewable energy sources into the electrical power system. This paper outlines an efficient hybrid particle swarm gray wolf optimizer (HPS-GWO)-based optimal power flow solution for a system combining solar photovoltaic (SPV) and wind energy (WE) sources with conventional fuel-based thermal generators (TGs). The output power of SPV and WE sources was forecasted using lognormal and Weibull probability density functions (PDFs), respectively. The two conventional fossil-fuel-based TGs are replaced with WE and SPV sources in the existing IEEE-30 bus system, and total generation cost, emission and power losses are considered the three main objective functions for optimization of the optimal power flow problem in each scenario. A carbon tax is imposed on the emission from fossil-fuel-based TGs, which results in a reduction in the emission from TGs. The results were verified on the modified test system that consists of SPV and WE sources. The simulation results confirm the validity and effectiveness of the suggested model and proposed hybrid optimizer. The results confirm the exploitation and exploration capability of the HPS-GWO algorithm. The results achieved from the modified system demonstrate that the use of SPV and WE sources in combination with fossil-fuel-based TGs reduces the total system generation cost and greenhouse emissions of the entire power system.

Suggested Citation

  • Muhammad Riaz & Aamir Hanif & Haris Masood & Muhammad Attique Khan & Kamran Afaq & Byeong-Gwon Kang & Yunyoung Nam, 2021. "An Optimal Power Flow Solution of a System Integrated with Renewable Sources Using a Hybrid Optimizer," Sustainability, MDPI, vol. 13(23), pages 1-12, December.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:23:p:13382-:d:694076
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/23/13382/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/23/13382/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sirote Khunkitti & Apirat Siritaratiwat & Suttichai Premrudeepreechacharn, 2021. "Multi-Objective Optimal Power Flow Problems Based on Slime Mould Algorithm," Sustainability, MDPI, vol. 13(13), pages 1-21, July.
    2. Morshed, Mohammad Javad & Hmida, Jalel Ben & Fekih, Afef, 2018. "A probabilistic multi-objective approach for power flow optimization in hybrid wind-PV-PEV systems," Applied Energy, Elsevier, vol. 211(C), pages 1136-1149.
    3. Andrés Alfonso Rosales-Muñoz & Luis Fernando Grisales-Noreña & Jhon Montano & Oscar Danilo Montoya & Alberto-Jesus Perea-Moreno, 2021. "Application of the Multiverse Optimization Method to Solve the Optimal Power Flow Problem in Direct Current Electrical Networks," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    4. Antimo Barbato & Antonio Capone, 2014. "Optimization Models and Methods for Demand-Side Management of Residential Users: A Survey," Energies, MDPI, vol. 7(9), pages 1-38, September.
    5. Muhammad Salman Shabbir & Ahmed Faisal Siddiqi & Lis M. Yapanto & Evgeny E. Tonkov & Andrey Leonidovich Poltarykhin & Anna Valeryevna Pilyugina & Aleksandr Mikhailovich Petrov & Amin Foroughi & Dinara, 2021. "Closed-Loop Supply Chain Design and Pricing in Competitive Conditions by Considering the Variable Value of Return Products Using the Whale Optimization Algorithm," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    6. Qingmiao Liao & Jianjun Yang & Yong Zhou, 2019. "Sustainable Scheduling of an Automatic Pallet Changer System by Multi-Objective Evolutionary Algorithm with First Piece Inspection," Sustainability, MDPI, vol. 11(5), pages 1-24, March.
    7. Yousef Alhumaid & Khalid Khan & Fahad Alismail & Muhammad Khalid, 2021. "Multi-Input Nonlinear Programming Based Deterministic Optimization Framework for Evaluating Microgrids with Optimal Renewable-Storage Energy Mix," Sustainability, MDPI, vol. 13(11), pages 1-15, May.
    8. Mohsen Momenitabar & Jeremy Mattson, 2021. "A Multi-Objective Meta-Heuristic Approach to Improve the Bus Transit Network: A Case Study of Fargo-Moorhead Area," Sustainability, MDPI, vol. 13(19), pages 1-25, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaçine Merrad & Mohamed Hadi Habaebi & Siti Fauziah Toha & Md. Rafiqul Islam & Teddy Surya Gunawan & Mokhtaria Mesri, 2022. "Fully Decentralized, Cost-Effective Energy Demand Response Management System with a Smart Contracts-Based Optimal Power Flow Solution for Smart Grids," Energies, MDPI, vol. 15(12), pages 1-27, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yongli & Wang, Yudong & Huang, Yujing & Yang, Jiale & Ma, Yuze & Yu, Haiyang & Zeng, Ming & Zhang, Fuwei & Zhang, Yanfu, 2019. "Operation optimization of regional integrated energy system based on the modeling of electricity-thermal-natural gas network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Zhu, Jianhua & Peng, Yan & Gong, Zhuping & Sun, Yanming & Lai, Chaoan & Wang, Qing & Zhu, Xiaojun & Gan, Zhongxue, 2019. "Dynamic analysis of SNG and PNG supply: The stability and robustness view #," Energy, Elsevier, vol. 185(C), pages 717-729.
    3. Thijs Klauw & Marco E. T. Gerards & Johann L. Hurink, 2017. "Resource allocation problems in decentralized energy management," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(3), pages 749-773, July.
    4. Simona-Vasilica Oprea & Adela Bâra & Adriana Reveiu, 2018. "Informatics Solution for Energy Efficiency Improvement and Consumption Management of Householders," Energies, MDPI, vol. 11(1), pages 1-31, January.
    5. Jaszczur, Marek & Hassan, Qusay & Palej, Patryk & Abdulateef, Jasim, 2020. "Multi-Objective optimisation of a micro-grid hybrid power system for household application," Energy, Elsevier, vol. 202(C).
    6. Xiao, Qing & Zhou, Shaowu, 2018. "Probabilistic power flow computation considering correlated wind speeds," Applied Energy, Elsevier, vol. 231(C), pages 677-685.
    7. Mohammad Ali Beheshtinia & Parisa Feizollahy & Masood Fathi, 2021. "Supply Chain Optimization Considering Sustainability Aspects," Sustainability, MDPI, vol. 13(21), pages 1-23, October.
    8. Nie, Qingyun & Zhang, Lihui & Tong, Zihao & Dai, Guyu & Chai, Jianxue, 2022. "Cost compensation method for PEVs participating in dynamic economic dispatch based on carbon trading mechanism," Energy, Elsevier, vol. 239(PA).
    9. Huang, Pei & Wu, Hunjun & Huang, Gongsheng & Sun, Yongjun, 2018. "A top-down control method of nZEBs for performance optimization at nZEB-cluster-level," Energy, Elsevier, vol. 159(C), pages 891-904.
    10. Zhang, Sheng & Huang, Pei & Sun, Yongjun, 2016. "A multi-criterion renewable energy system design optimization for net zero energy buildings under uncertainties," Energy, Elsevier, vol. 94(C), pages 654-665.
    11. Slim Abid & Ali M. El-Rifaie & Mostafa Elshahed & Ahmed R. Ginidi & Abdullah M. Shaheen & Ghareeb Moustafa & Mohamed A. Tolba, 2023. "Development of Slime Mold Optimizer with Application for Tuning Cascaded PD-PI Controller to Enhance Frequency Stability in Power Systems," Mathematics, MDPI, vol. 11(8), pages 1-32, April.
    12. Murtadha Al-Kaabi & Virgil Dumbrava & Mircea Eremia, 2022. "A Slime Mould Algorithm Programming for Solving Single and Multi-Objective Optimal Power Flow Problems with Pareto Front Approach: A Case Study of the Iraqi Super Grid High Voltage," Energies, MDPI, vol. 15(20), pages 1-33, October.
    13. Veerasamy, Veerapandiyan & Abdul Wahab, Noor Izzri & Ramachandran, Rajeswari & Othman, Mohammad Lutfi & Hizam, Hashim & Devendran, Vidhya Sagar & Irudayaraj, Andrew Xavier Raj & Vinayagam, Arangarajan, 2021. "Recurrent network based power flow solution for voltage stability assessment and improvement with distributed energy sources," Applied Energy, Elsevier, vol. 302(C).
    14. Ragab El-Sehiemy & Abdallah Elsayed & Abdullah Shaheen & Ehab Elattar & Ahmed Ginidi, 2021. "Scheduling of Generation Stations, OLTC Substation Transformers and VAR Sources for Sustainable Power System Operation Using SNS Optimizer," Sustainability, MDPI, vol. 13(21), pages 1-24, October.
    15. Mohamed S. Hashish & Hany M. Hasanien & Haoran Ji & Abdulaziz Alkuhayli & Mohammed Alharbi & Tlenshiyeva Akmaral & Rania A. Turky & Francisco Jurado & Ahmed O. Badr, 2023. "Monte Carlo Simulation and a Clustering Technique for Solving the Probabilistic Optimal Power Flow Problem for Hybrid Renewable Energy Systems," Sustainability, MDPI, vol. 15(1), pages 1-25, January.
    16. Amit Shewale & Anil Mokhade & Nitesh Funde & Neeraj Dhanraj Bokde, 2022. "A Survey of Efficient Demand-Side Management Techniques for the Residential Appliance Scheduling Problem in Smart Homes," Energies, MDPI, vol. 15(8), pages 1-34, April.
    17. Rodrigo Verschae & Takekazu Kato & Takashi Matsuyama, 2016. "Energy Management in Prosumer Communities: A Coordinated Approach," Energies, MDPI, vol. 9(7), pages 1-27, July.
    18. Baxter Williams & Daniel Bishop & Patricio Gallardo & J. Geoffrey Chase, 2023. "Demand Side Management in Industrial, Commercial, and Residential Sectors: A Review of Constraints and Considerations," Energies, MDPI, vol. 16(13), pages 1-28, July.
    19. Mengmeng Qiao & Zexu Yu & Zhenhai Dou & Yuanyuan Wang & Ye Zhao & Ruishuo Xie & Lianxin Liu, 2022. "Study on Economic Dispatch of the Combined Cooling Heating and Power Microgrid Based on Improved Sparrow Search Algorithm," Energies, MDPI, vol. 15(14), pages 1-31, July.
    20. Mohammad Ali Taghikhani & Behnam Zangeneh, 2022. "Optimal energy scheduling of micro-grids considering the uncertainty of solar and wind renewable resources," Journal of Scheduling, Springer, vol. 25(5), pages 567-576, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:23:p:13382-:d:694076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.