IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i5p1498-d213174.html
   My bibliography  Save this article

Sustainable Scheduling of an Automatic Pallet Changer System by Multi-Objective Evolutionary Algorithm with First Piece Inspection

Author

Listed:
  • Qingmiao Liao

    (School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China)

  • Jianjun Yang

    (School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China)

  • Yong Zhou

    (School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China)

Abstract

In this study, the machining center with the Automated Pallet Changer (APC) scheduling problem considering the disturbance of the first piece inspection is presented. The APC is frequently used in industry practice; it is useful in terms of sustainability and robustness because it increases the machine utilization rate and enhances the responsiveness to uncertainties in dynamic environments. An enhanced evolutionary algorithm for APC scheduling (APCEA) is developed by combining the multi-objective evolutionary algorithm with APC simulation. The dynamic factors in the simulation model include the pass rate of the first piece inspection (FPI) and the adjusted time when the FPI is unpassed. The proposed APCEA defines the non-robust gene based on the risk combination of the first piece inspection, and screens the non-robust gene in the genetic operation, thus improving the solution quality under the same computation times. Compared with the other three multi-objective evolutionary algorithms (MOEAs), it is demonstrated that the proposed APCEA produces the best result among the four methods. The proposed APCEA has been embedded into the manufacturing execution system (MES) and successfully applied in a manufacturing plant. The application value of the proposed method is verified by a practical example.

Suggested Citation

  • Qingmiao Liao & Jianjun Yang & Yong Zhou, 2019. "Sustainable Scheduling of an Automatic Pallet Changer System by Multi-Objective Evolutionary Algorithm with First Piece Inspection," Sustainability, MDPI, vol. 11(5), pages 1-24, March.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:5:p:1498-:d:213174
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/5/1498/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/5/1498/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hyun Cheol Lee & Chunghun Ha, 2019. "Sustainable Integrated Process Planning and Scheduling Optimization Using a Genetic Algorithm with an Integrated Chromosome Representation," Sustainability, MDPI, vol. 11(2), pages 1-23, January.
    2. Alcaide, D. & Rodriguez-Gonzalez, A. & Sicilia, J., 2002. "An approach to solve the minimum expected makespan flow-shop problem subject to breakdowns," European Journal of Operational Research, Elsevier, vol. 140(2), pages 384-398, July.
    3. S. S. Panwalkar & Wafik Iskander, 1977. "A Survey of Scheduling Rules," Operations Research, INFORMS, vol. 25(1), pages 45-61, February.
    4. Rui Zhang, 2017. "Sustainable Scheduling of Cloth Production Processes by Multi-Objective Genetic Algorithm with Tabu-Enhanced Local Search," Sustainability, MDPI, vol. 9(10), pages 1-26, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Riaz & Aamir Hanif & Haris Masood & Muhammad Attique Khan & Kamran Afaq & Byeong-Gwon Kang & Yunyoung Nam, 2021. "An Optimal Power Flow Solution of a System Integrated with Renewable Sources Using a Hybrid Optimizer," Sustainability, MDPI, vol. 13(23), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Drexl, Andreas & Kolisch, Rainer, 1991. "Produktionsplanung und -steuerung bei Einzel- und Kleinserienfertigung," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 281, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    2. Anurag Agarwal & Varghese S. Jacob & Hasan Pirkul, 2006. "An Improved Augmented Neural-Network Approach for Scheduling Problems," INFORMS Journal on Computing, INFORMS, vol. 18(1), pages 119-128, February.
    3. Parlakturk, Ali & Kumar, Sunil, 2004. "Self-Interested Routing in Queueing Networks," Research Papers 1782r, Stanford University, Graduate School of Business.
    4. Changhyun Kim & KwangSup Shin, 2019. "Developing Fair Investment Plans to Enhance Supply Chain Visibility Using Cooperative Games," Sustainability, MDPI, vol. 11(11), pages 1-13, June.
    5. Bierwirth, C. & Kuhpfahl, J., 2017. "Extended GRASP for the job shop scheduling problem with total weighted tardiness objective," European Journal of Operational Research, Elsevier, vol. 261(3), pages 835-848.
    6. Mobin, Mohammadsadegh & Li, Zhaojun & Cheraghi, S. Hossein & Wu, Gongyu, 2019. "An approach for design Verification and Validation planning and optimization for new product reliability improvement," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    7. M. Vimala Rani & M. Mathirajan, 2020. "Performance evaluation of due-date based dispatching rules in dynamic scheduling of diffusion furnace," OPSEARCH, Springer;Operational Research Society of India, vol. 57(2), pages 462-512, June.
    8. P Chen & C-C Wu & W-C Lee, 2006. "A bi-criteria two-machine flowshop scheduling problem with a learning effect," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(9), pages 1113-1125, September.
    9. Chauvet, Fabrice & Levner, Eugene & Meyzin, Leonid K. & Proth, Jean-Marie, 2000. "On-line scheduling in a surface treatment system," European Journal of Operational Research, Elsevier, vol. 120(2), pages 382-392, January.
    10. Zoghby, Jeriad & Wesley Barnes, J. & Hasenbein, John J., 2005. "Modeling the reentrant job shop scheduling problem with setups for metaheuristic searches," European Journal of Operational Research, Elsevier, vol. 167(2), pages 336-348, December.
    11. Valls, Vicente & Angeles Perez, M. & Sacramento Quintanilla, M., 1998. "A tabu search approach to machine scheduling," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 277-300, April.
    12. Alejandra Duenas & Dobrila Petrovic, 2008. "An approach to predictive-reactive scheduling of parallel machines subject to disruptions," Annals of Operations Research, Springer, vol. 159(1), pages 65-82, March.
    13. Mohammad Reza Hosseinzadeh & Mehdi Heydari & Mohammad Mahdavi Mazdeh, 2022. "Mathematical modeling and two metaheuristic algorithms for integrated process planning and group scheduling with sequence-dependent setup time," Operational Research, Springer, vol. 22(5), pages 5055-5105, November.
    14. Jain, A. S. & Meeran, S., 1999. "Deterministic job-shop scheduling: Past, present and future," European Journal of Operational Research, Elsevier, vol. 113(2), pages 390-434, March.
    15. Guinet, Alain & Legrand, Marie, 1998. "Reduction of job-shop problems to flow-shop problems with precedence constraints," European Journal of Operational Research, Elsevier, vol. 109(1), pages 96-110, August.
    16. Monaci, Marta & Agasucci, Valerio & Grani, Giorgio, 2024. "An actor-critic algorithm with policy gradients to solve the job shop scheduling problem using deep double recurrent agents," European Journal of Operational Research, Elsevier, vol. 312(3), pages 910-926.
    17. Chen, Haoxun & Luh, Peter B., 2003. "An alternative framework to Lagrangian relaxation approach for job shop scheduling," European Journal of Operational Research, Elsevier, vol. 149(3), pages 499-512, September.
    18. Sang-Oh Shim & KyungBae Park & SungYong Choi, 2017. "Innovative Production Scheduling with Customer Satisfaction Based Measurement for the Sustainability of Manufacturing Firms," Sustainability, MDPI, vol. 9(12), pages 1-12, December.
    19. Land, Martin & Gaalman, Gerard, 1996. "Workload control concepts in job shops A critical assessment," International Journal of Production Economics, Elsevier, vol. 46(1), pages 535-548, December.
    20. Drexl, Andreas & Salewski, Frank, 1996. "Distribution Requirements and Compactness Constraints in School Timetabling. Part II: Methods," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 384, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:5:p:1498-:d:213174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.