IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1350-d1048230.html
   My bibliography  Save this article

An Effective Power Dispatch of Photovoltaic Generators in DC Networks via the Antlion Optimizer

Author

Listed:
  • Luis Fernando Grisales-Noreña

    (Department of Electrical Engineering, Faculty of Engineering, Universidad de Talca, Curicó 3340000, Chile)

  • Andrés Alfonso Rosales-Muñoz

    (Departamento de Mecatrónica y Electromecánica, Facultad de Ingeniería, Instituto Tecnológico Metropolitano, Medellín 050036, Colombia)

  • Oscar Danilo Montoya

    (Grupo de Compatibilidad e Interferencia Electromagnética (GCEM), Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, Bogotá 110231, Colombia
    Laboratorio Inteligente de Energía, Facultad de Ingeniería, Universidad Tecnológica de Bolívar, Cartagena 131001, Colombia)

Abstract

This paper studies the problem regarding the optimal power dispatch of photovoltaic (PV) distributed generators (DGs) in Direct Current (DC) grid-connected and standalone networks. The mathematical model employed considers the reduction of operating costs, energy losses, and C O 2 emissions as objective functions, and it integrates all technical and operating constraints implied by DC grids in a scenario of variable PV generation and power demand. As a solution methodology, a master–slave strategy was proposed, whose master stage employs Antlion Optimizer (ALO) for identifying the values of power to be dispatched by each PV-DG installed in the grid, whereas the slave stage uses a matrix hourly power flow method based on successive approximations to evaluate the objective functions and constraints associated with each solution proposed within the iterative process of the ALO. Two test scenarios were considered: a grid-connected network that considers the operating characteristics of the city of Medellín, Antioquia, and a standalone network that uses data from the municipality of Capurganá, Chocó, both of them located in Colombia. As comparison methods, five continuous optimization methods were used which were proposed in the specialized literature to solve optimal power flow problems in DC grids: the crow search algorithm, the particle swarm optimization algorithm, the multiverse optimization algorithm, the salp swarm algorithm, and the vortex search algorithm. The effectiveness of the proposed method was evaluated in terms of the solution, its repeatability, and its processing times, and it obtained the best results with respect to the comparison methods for both grid types. The simulation results obtained for both test systems evidenced that the proposed methodology obtained the best results with regard to the solution, with short processing times for all of the objective functions analyzed.

Suggested Citation

  • Luis Fernando Grisales-Noreña & Andrés Alfonso Rosales-Muñoz & Oscar Danilo Montoya, 2023. "An Effective Power Dispatch of Photovoltaic Generators in DC Networks via the Antlion Optimizer," Energies, MDPI, vol. 16(3), pages 1-28, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1350-:d:1048230
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1350/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1350/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elyas Rakhshani & Kumars Rouzbehi & Adolfo J. Sánchez & Ana Cabrera Tobar & Edris Pouresmaeil, 2019. "Integration of Large Scale PV-Based Generation into Power Systems: A Survey," Energies, MDPI, vol. 12(8), pages 1-19, April.
    2. Tan, Qinliang & Ding, Yihong & Ye, Qi & Mei, Shufan & Zhang, Yimei & Wei, Yongmei, 2019. "Optimization and evaluation of a dispatch model for an integrated wind-photovoltaic-thermal power system based on dynamic carbon emissions trading," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    3. Singh, G.K., 2013. "Solar power generation by PV (photovoltaic) technology: A review," Energy, Elsevier, vol. 53(C), pages 1-13.
    4. Saheed Lekan Gbadamosi & Nnamdi I. Nwulu, 2020. "Optimal Power Dispatch and Reliability Analysis of Hybrid CHP-PV-Wind Systems in Farming Applications," Sustainability, MDPI, vol. 12(19), pages 1-16, October.
    5. Luis Fernando Grisales-Noreña & Jauder Alexander Ocampo-Toro & Andrés Alfonso Rosales-Muñoz & Brandon Cortes-Caicedo & Oscar Danilo Montoya, 2022. "An Energy Management System for PV Sources in Standalone and Connected DC Networks Considering Economic, Technical, and Environmental Indices," Sustainability, MDPI, vol. 14(24), pages 1-25, December.
    6. Andrés Alfonso Rosales-Muñoz & Luis Fernando Grisales-Noreña & Jhon Montano & Oscar Danilo Montoya & Alberto-Jesus Perea-Moreno, 2021. "Application of the Multiverse Optimization Method to Solve the Optimal Power Flow Problem in Direct Current Electrical Networks," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    7. Dong, Jun & Feng, Tian-tian & Sun, Hong-xing & Cai, Hong-xin & Li, Rong & Yang, Yisheng, 2016. "Clean distributed generation in China: Policy options and international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 753-764.
    8. Luis Fernando Grisales-Noreña & Carlos Andrés Ramos-Paja & Daniel Gonzalez-Montoya & Gerardo Alcalá & Quetzalcoatl Hernandez-Escobedo, 2020. "Energy Management in PV Based Microgrids Designed for the Universidad Nacional de Colombia," Sustainability, MDPI, vol. 12(3), pages 1-24, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrés Alfonso Rosales-Muñoz & Jhon Montano & Luis Fernando Grisales-Noreña & Oscar Danilo Montoya & Fabio Andrade, 2022. "Optimal Power Dispatch of DGs in Radial and Mesh AC Grids: A Hybrid Solution Methodology between the Salps Swarm Algorithm and Successive Approximation Power Flow Method," Sustainability, MDPI, vol. 14(20), pages 1-32, October.
    2. Oscar Danilo Montoya & Federico Martin Serra & Walter Gil-González, 2023. "A Robust Conic Programming Approximation to Design an EMS in Monopolar DC Networks with a High Penetration of PV Plants," Energies, MDPI, vol. 16(18), pages 1-17, September.
    3. Luis Fernando Grisales-Noreña & Andrés Alfonso Rosales-Muñoz & Brandon Cortés-Caicedo & Oscar Danilo Montoya & Fabio Andrade, 2022. "Optimal Operation of PV Sources in DC Grids for Improving Technical, Economical, and Environmental Conditions by Using Vortex Search Algorithm and a Matrix Hourly Power Flow," Mathematics, MDPI, vol. 11(1), pages 1-28, December.
    4. Francesco Lo Franco & Mattia Ricco & Riccardo Mandrioli & Gabriele Grandi, 2020. "Electric Vehicle Aggregate Power Flow Prediction and Smart Charging System for Distributed Renewable Energy Self-Consumption Optimization," Energies, MDPI, vol. 13(19), pages 1-25, September.
    5. Aste, Niccolò & Del Pero, Claudio & Leonforte, Fabrizio & Manfren, Massimiliano, 2013. "A simplified model for the estimation of energy production of PV systems," Energy, Elsevier, vol. 59(C), pages 503-512.
    6. Liu, Shen & Colson, Gregory & Hao, Na & Wetzstein, Michael, 2018. "Toward an optimal household solar subsidy: A social-technical approach," Energy, Elsevier, vol. 147(C), pages 377-387.
    7. Guan, Yanling & Zhang, Hao & Xiao, Bin & Zhou, Zhi & Yan, Xuzhou, 2017. "In-situ investigation of the effect of dust deposition on the performance of polycrystalline silicon photovoltaic modules," Renewable Energy, Elsevier, vol. 101(C), pages 1273-1284.
    8. Kamjoo, Azadeh & Maheri, Alireza & Putrus, Ghanim A., 2014. "Chance constrained programming using non-Gaussian joint distribution function in design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 66(C), pages 677-688.
    9. Chaymae Boubii & Ismail El Kafazi & Rachid Bannari & Brahim El Bhiri & Badre Bossoufi & Hossam Kotb & Kareem M. AboRas & Ahmed Emara & Badr Nasiri, 2024. "Synergizing Wind and Solar Power: An Advanced Control System for Grid Stability," Sustainability, MDPI, vol. 16(2), pages 1-44, January.
    10. Yuzhe Qin & Qing Cheng, 2025. "Optimization Study of Photovoltaic Cell Arrangement Strategies in Greenhouses," Energies, MDPI, vol. 18(1), pages 1-28, January.
    11. Abdul K Hamid & Nsilulu T Mbungu & A. Elnady & Ramesh C Bansal & Ali A Ismail & Mohammad A AlShabi, 2023. "A systematic review of grid-connected photovoltaic and photovoltaic/thermal systems: Benefits, challenges and mitigation," Energy & Environment, , vol. 34(7), pages 2775-2814, November.
    12. Tholkappiyan Ramachandran & Abdel-Hamid I. Mourad & Fathalla Hamed, 2022. "A Review on Solar Energy Utilization and Projects: Development in and around the UAE," Energies, MDPI, vol. 15(10), pages 1-27, May.
    13. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    14. Muhammad Riaz & Aamir Hanif & Haris Masood & Muhammad Attique Khan & Kamran Afaq & Byeong-Gwon Kang & Yunyoung Nam, 2021. "An Optimal Power Flow Solution of a System Integrated with Renewable Sources Using a Hybrid Optimizer," Sustainability, MDPI, vol. 13(23), pages 1-12, December.
    15. Dong, Liwei & Zuo, Jianyong & Wang, Tianpeng & Xue, Wenbin & Wang, Ping & Li, Jun & Yang, Fan, 2022. "Enhanced piezoelectric harvester for track vibration based on tunable broadband resonant methodology," Energy, Elsevier, vol. 254(PA).
    16. Ma, Tao & Zhao, Jiaxin & Li, Zhenpeng, 2018. "Mathematical modelling and sensitivity analysis of solar photovoltaic panel integrated with phase change material," Applied Energy, Elsevier, vol. 228(C), pages 1147-1158.
    17. Sun, Lexuan & Li, Wei & Song, Jie, 2025. "Contract selection decision of hybrid energy power supply chain under cap-and-trade: From the perspective of supply disruption risk," Energy Economics, Elsevier, vol. 142(C).
    18. Punia Sindhu, Sonal & Nehra, Vijay & Luthra, Sunil, 2016. "Recognition and prioritization of challenges in growth of solar energy using analytical hierarchy process: Indian outlook," Energy, Elsevier, vol. 100(C), pages 332-348.
    19. Ding, Yihong & Tan, Qinliang & Shan, Zijing & Han, Jian & Zhang, Yimei, 2023. "A two-stage dispatching optimization strategy for hybrid renewable energy system with low-carbon and sustainability in ancillary service market," Renewable Energy, Elsevier, vol. 207(C), pages 647-659.
    20. Kaloop, Mosbeh R. & Bardhan, Abidhan & Kardani, Navid & Samui, Pijush & Hu, Jong Wan & Ramzy, Ahmed, 2021. "Novel application of adaptive swarm intelligence techniques coupled with adaptive network-based fuzzy inference system in predicting photovoltaic power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1350-:d:1048230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.