IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i2p815-d1321105.html
   My bibliography  Save this article

Synergizing Wind and Solar Power: An Advanced Control System for Grid Stability

Author

Listed:
  • Chaymae Boubii

    (Engineering Sciences Laboratory, ENSA, Ibn Tofail University, Kenitra 14000, Morocco)

  • Ismail El Kafazi

    (Laboratory SMARTILAB, Moroccan School Engineering Sciences, EMSI, Rabat 10150, Morocco)

  • Rachid Bannari

    (Engineering Sciences Laboratory, ENSA, Ibn Tofail University, Kenitra 14000, Morocco)

  • Brahim El Bhiri

    (Laboratory SMARTILAB, Moroccan School Engineering Sciences, EMSI, Rabat 10150, Morocco)

  • Badre Bossoufi

    (LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco)

  • Hossam Kotb

    (Department of Electrical Power and Machines, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt)

  • Kareem M. AboRas

    (Department of Electrical Power and Machines, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt)

  • Ahmed Emara

    (Electrical Engineering Department, University of Business and Technology, Ar Rawdah, Jeddah 23435, Saudi Arabia
    Engineering Mathematics and Physics Department, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt)

  • Badr Nasiri

    (Laboratory of Optic of Information Processing, Mechanic, Energetic and Electronic, Faculty of Science, University Moulay Ismail, Meknes 50050, Morocco)

Abstract

In response to the escalating global energy crisis, the motivation for this research has been derived from the need for sustainable and efficient energy solutions. A gap in existing renewable energy systems, particularly in terms of stability and efficiency under variable environmental conditions, has been recognized, leading to the introduction of a novel hybrid system that combines photovoltaic (PV) and wind energy. The innovation of this study lies in the methodological approach that has been adopted, integrating dynamic modeling with a sophisticated control mechanism. This mechanism, a blend of model predictive control (MPC) and particle swarm optimization (PSO), has been specifically designed to address the fluctuations inherent in PV and wind power sources. The methodology involves a detailed stability analysis using Lyapunov’s theorem, a critical step distinguishing this system from conventional renewable energy solutions. The integration of MPC and PSO, pivotal in enhancing the system’s adaptability and optimizing the maximum power point tracking (MPPT) process, improves control efficiency across key components like the doubly fed induction generator (DFIG), rectifier-sourced converter (RSC), and grid-side converter (GSC). Through rigorous MATLAB simulations, the system’s robust response to changing solar irradiance and wind velocities has been demonstrated. The key findings confirm the system’s ability to maintain stable power generation, underscoring its practicality and efficiency in renewable energy integration. Not only has this study filled a crucial gap in renewable energy control systems, but it has also set a precedent for future research in sustainable energy technologies.

Suggested Citation

  • Chaymae Boubii & Ismail El Kafazi & Rachid Bannari & Brahim El Bhiri & Badre Bossoufi & Hossam Kotb & Kareem M. AboRas & Ahmed Emara & Badr Nasiri, 2024. "Synergizing Wind and Solar Power: An Advanced Control System for Grid Stability," Sustainability, MDPI, vol. 16(2), pages 1-44, January.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:2:p:815-:d:1321105
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/2/815/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/2/815/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohamed A. Tolba & Hegazy Rezk & Vladimir Tulsky & Ahmed A. Zaki Diab & Almoataz Y. Abdelaziz & Artem Vanin, 2018. "Impact of Optimum Allocation of Renewable Distributed Generations on Distribution Networks Based on Different Optimization Algorithms," Energies, MDPI, vol. 11(1), pages 1-33, January.
    2. Singh, G.K., 2013. "Solar power generation by PV (photovoltaic) technology: A review," Energy, Elsevier, vol. 53(C), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arkadiusz Małek & Agnieszka Dudziak & Andrzej Marciniak & Tomasz Słowik, 2025. "Designing a Photovoltaic–Wind Energy Mix with Energy Storage for Low-Emission Hydrogen Production," Energies, MDPI, vol. 18(4), pages 1-23, February.
    2. Riho Meister & Wahiba Yaïci & Reza Moezzi & Mohammad Gheibi & Külli Hovi & Andres Annuk, 2025. "Evaluating the Balancing Properties of Wind and Solar Photovoltaic System Production," Energies, MDPI, vol. 18(7), pages 1-16, April.
    3. Liuqing Gu & Jian Xu & Deping Ke & Youhan Deng & Xiaojun Hua & Yi Yu, 2024. "Short-Term Output Scenario Generation of Renewable Energy Using Transformer–Wasserstein Generative Adversarial Nets-Gradient Penalty," Sustainability, MDPI, vol. 16(24), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chaymae Boubii & Ismail El Kafazi & Rachid Bannari & Brahim El Bhiri & Saleh Mobayen & Anton Zhilenkov & Badre Bossoufi, 2023. "Integrated Control and Optimization for Grid-Connected Photovoltaic Systems: A Model-Predictive and PSO Approach," Energies, MDPI, vol. 16(21), pages 1-22, November.
    2. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    3. Chu, Yinghao & Li, Mengying & Coimbra, Carlos F.M., 2016. "Sun-tracking imaging system for intra-hour DNI forecasts," Renewable Energy, Elsevier, vol. 96(PA), pages 792-799.
    4. Galal Borham Wereda & Ibrahim Mohamed Diaaeldin & Othman A. M. Omar & Mahmoud A. Attia & Ahmed O. Badr, 2025. "A Novel Optimization Approach Using Chaos Game Optimization Algorithm for Parameters Estimation of Photovoltaic Cells," Sustainability, MDPI, vol. 17(4), pages 1-19, February.
    5. Guo, Siyu & Walsh, Timothy Michael & Peters, Marius, 2013. "Vertically mounted bifacial photovoltaic modules: A global analysis," Energy, Elsevier, vol. 61(C), pages 447-454.
    6. Aste, Niccolò & Del Pero, Claudio & Leonforte, Fabrizio & Manfren, Massimiliano, 2013. "A simplified model for the estimation of energy production of PV systems," Energy, Elsevier, vol. 59(C), pages 503-512.
    7. Liu, Shen & Colson, Gregory & Hao, Na & Wetzstein, Michael, 2018. "Toward an optimal household solar subsidy: A social-technical approach," Energy, Elsevier, vol. 147(C), pages 377-387.
    8. Guan, Yanling & Zhang, Hao & Xiao, Bin & Zhou, Zhi & Yan, Xuzhou, 2017. "In-situ investigation of the effect of dust deposition on the performance of polycrystalline silicon photovoltaic modules," Renewable Energy, Elsevier, vol. 101(C), pages 1273-1284.
    9. Kamjoo, Azadeh & Maheri, Alireza & Putrus, Ghanim A., 2014. "Chance constrained programming using non-Gaussian joint distribution function in design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 66(C), pages 677-688.
    10. Yuzhe Qin & Qing Cheng, 2025. "Optimization Study of Photovoltaic Cell Arrangement Strategies in Greenhouses," Energies, MDPI, vol. 18(1), pages 1-28, January.
    11. Abdul K Hamid & Nsilulu T Mbungu & A. Elnady & Ramesh C Bansal & Ali A Ismail & Mohammad A AlShabi, 2023. "A systematic review of grid-connected photovoltaic and photovoltaic/thermal systems: Benefits, challenges and mitigation," Energy & Environment, , vol. 34(7), pages 2775-2814, November.
    12. Tholkappiyan Ramachandran & Abdel-Hamid I. Mourad & Fathalla Hamed, 2022. "A Review on Solar Energy Utilization and Projects: Development in and around the UAE," Energies, MDPI, vol. 15(10), pages 1-27, May.
    13. Muhsen, Dhiaa Halboot & Khatib, Tamer & Nagi, Farrukh, 2017. "A review of photovoltaic water pumping system designing methods, control strategies and field performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 70-86.
    14. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    15. Khandelwal, Akshat & Maarisetty, Dileep & Baral, Saroj Sundar, 2022. "Fundamentals and application of single-atom photocatalyst in sustainable energy and environmental applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    16. Dong, Liwei & Zuo, Jianyong & Wang, Tianpeng & Xue, Wenbin & Wang, Ping & Li, Jun & Yang, Fan, 2022. "Enhanced piezoelectric harvester for track vibration based on tunable broadband resonant methodology," Energy, Elsevier, vol. 254(PA).
    17. Ma, Tao & Zhao, Jiaxin & Li, Zhenpeng, 2018. "Mathematical modelling and sensitivity analysis of solar photovoltaic panel integrated with phase change material," Applied Energy, Elsevier, vol. 228(C), pages 1147-1158.
    18. Punia Sindhu, Sonal & Nehra, Vijay & Luthra, Sunil, 2016. "Recognition and prioritization of challenges in growth of solar energy using analytical hierarchy process: Indian outlook," Energy, Elsevier, vol. 100(C), pages 332-348.
    19. Li, Mengying & Chu, Yinghao & Pedro, Hugo T.C. & Coimbra, Carlos F.M., 2016. "Quantitative evaluation of the impact of cloud transmittance and cloud velocity on the accuracy of short-term DNI forecasts," Renewable Energy, Elsevier, vol. 86(C), pages 1362-1371.
    20. Bocca, Alberto & Chiavazzo, Eliodoro & Macii, Alberto & Asinari, Pietro, 2015. "Solar energy potential assessment: An overview and a fast modeling approach with application to Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 291-296.

    More about this item

    Keywords

    PV; DFIG; MPC; PSO; Lyapunov;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:2:p:815-:d:1321105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.