IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i1p245-d127831.html
   My bibliography  Save this article

Impact of Optimum Allocation of Renewable Distributed Generations on Distribution Networks Based on Different Optimization Algorithms

Author

Listed:
  • Mohamed A. Tolba

    (Nuclear Researches Center, Egyptian Atomic Energy Authority (EAEA), 11787 Cairo, Egypt
    Electrical Power Systems Department, NRU, Moscow Power Engineering Institute, 111250 Moscow, Russia)

  • Hegazy Rezk

    (College of Engineering at Wadi Aldawaser, Prince Sattam bin Abdulaziz University, 11991 Wadi Aldawaser, Saudi Arabia
    Electrical Engineering Department, Faculty of Engineering, Minia University, 61111 Minia, Egypt)

  • Vladimir Tulsky

    (Electrical Power Systems Department, NRU, Moscow Power Engineering Institute, 111250 Moscow, Russia)

  • Ahmed A. Zaki Diab

    (Electrical Power Systems Department, NRU, Moscow Power Engineering Institute, 111250 Moscow, Russia
    Electrical Engineering Department, Faculty of Engineering, Minia University, 61111 Minia, Egypt)

  • Almoataz Y. Abdelaziz

    (Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University, 11517 Cairo, Egypt)

  • Artem Vanin

    (Electrical Power Systems Department, NRU, Moscow Power Engineering Institute, 111250 Moscow, Russia)

Abstract

Integration of Renewable Distributed Generations (RDGs) such as photovoltaic (PV) systems and wind turbines (WTs) in distribution networks can be considered a brilliant and efficient solution to the growing demand for energy. This article introduces new robust and effective techniques like hybrid Particle Swarm Optimization in addition to a Gravitational Search Algorithm (PSOGSA) and Moth-Flame Optimization (MFO) that are proposed to deduce the optimum location with convenient capacity of RDGs units for minimizing system power losses and operating cost while improving voltage profile and voltage stability. This paper describes two stages. First, the Loss Sensitivity Factors (LSFs) are employed to select the most candidate buses for RDGs location. In the second stage, the PSOGSA and MFO are implemented to deduce the optimal location and capacity of RDGs from the elected buses. The proposed schemes have been applied on 33-bus and 69-bus IEEE standard radial distribution systems. To insure the suggested approaches validity, the numerical results have been compared with other techniques like Backtracking Search Optimization Algorithm (BSOA), Genetic Algorithm (GA), Particle Swarm Algorithm (PSO), Novel combined Genetic Algorithm and Particle Swarm Optimization (GA/PSO), Simulation Annealing Algorithm (SA), and Bacterial Foraging Optimization Algorithm (BFOA). The evaluated results have been confirmed the superiority with high performance of the proposed MFO technique to find the optimal solutions of RDGs units’ allocation. In this regard, the MFO is chosen to solve the problems of Egyptian Middle East distribution network as a practical case study with the optimal integration of RDGs.

Suggested Citation

  • Mohamed A. Tolba & Hegazy Rezk & Vladimir Tulsky & Ahmed A. Zaki Diab & Almoataz Y. Abdelaziz & Artem Vanin, 2018. "Impact of Optimum Allocation of Renewable Distributed Generations on Distribution Networks Based on Different Optimization Algorithms," Energies, MDPI, vol. 11(1), pages 1-33, January.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:245-:d:127831
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/1/245/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/1/245/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kalambe, Shilpa & Agnihotri, Ganga, 2014. "Loss minimization techniques used in distribution network: bibliographical survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 184-200.
    2. Ou, Ting-Chia & Hong, Chih-Ming, 2014. "Dynamic operation and control of microgrid hybrid power systems," Energy, Elsevier, vol. 66(C), pages 314-323.
    3. Ting-Chia Ou & Kai-Hung Lu & Chiou-Jye Huang, 2017. "Improvement of Transient Stability in a Hybrid Power Multi-System Using a Designed NIDC (Novel Intelligent Damping Controller)," Energies, MDPI, vol. 10(4), pages 1-16, April.
    4. Wenxia Liu & Huiting Xu & Shuya Niu & Jiang Xie, 2016. "Optimal Distributed Generator Allocation Method Considering Voltage Control Cost," Sustainability, MDPI, vol. 8(2), pages 1-20, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahmoud G. Hemeida & Salem Alkhalaf & Al-Attar A. Mohamed & Abdalla Ahmed Ibrahim & Tomonobu Senjyu, 2020. "Distributed Generators Optimization Based on Multi-Objective Functions Using Manta Rays Foraging Optimization Algorithm (MRFO)," Energies, MDPI, vol. 13(15), pages 1-37, July.
    2. Kyu-Hyung Jo & Mun-Kyeom Kim, 2018. "Stochastic Unit Commitment Based on Multi-Scenario Tree Method Considering Uncertainty," Energies, MDPI, vol. 11(4), pages 1-17, March.
    3. Mahesh Kumar & Amir Mahmood Soomro & Waqar Uddin & Laveet Kumar, 2022. "Optimal Multi-Objective Placement and Sizing of Distributed Generation in Distribution System: A Comprehensive Review," Energies, MDPI, vol. 15(21), pages 1-48, October.
    4. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    5. Subrat Kumar Dash & Sivkumar Mishra & Almoataz Y. Abdelaziz & Mamdouh L. Alghaythi & Ahmed Allehyani, 2022. "Optimal Allocation of Distributed Generators in Active Distribution Networks Using a New Oppositional Hybrid Sine Cosine Muted Differential Evolution Algorithm," Energies, MDPI, vol. 15(6), pages 1-35, March.
    6. David Abdul Konneh & Harun Or Rashid Howlader & Ryuto Shigenobu & Tomonobu Senjyu & Shantanu Chakraborty & Narayanan Krishna, 2019. "A Multi-Criteria Decision Maker for Grid-Connected Hybrid Renewable Energy Systems Selection Using Multi-Objective Particle Swarm Optimization," Sustainability, MDPI, vol. 11(4), pages 1-36, February.
    7. Anderson Passos de Aragão & Patrícia Teixeira Leite Asano & Ricardo de Andrade Lira Rabêlo, 2020. "A Reservoir Operation Policy Using Inter-Basin Water Transfer for Maximizing Hydroelectric Benefits in Brazil," Energies, MDPI, vol. 13(10), pages 1-26, May.
    8. Shazly A. Mohamed & Mohamed A. Tolba & Ayman A. Eisa & Ali M. El-Rifaie, 2021. "Comprehensive Modeling and Control of Grid-Connected Hybrid Energy Sources Using MPPT Controller," Energies, MDPI, vol. 14(16), pages 1-22, August.
    9. Chaymae Boubii & Ismail El Kafazi & Rachid Bannari & Brahim El Bhiri & Saleh Mobayen & Anton Zhilenkov & Badre Bossoufi, 2023. "Integrated Control and Optimization for Grid-Connected Photovoltaic Systems: A Model-Predictive and PSO Approach," Energies, MDPI, vol. 16(21), pages 1-22, November.
    10. Chaymae Boubii & Ismail El Kafazi & Rachid Bannari & Brahim El Bhiri & Badre Bossoufi & Hossam Kotb & Kareem M. AboRas & Ahmed Emara & Badr Nasiri, 2024. "Synergizing Wind and Solar Power: An Advanced Control System for Grid Stability," Sustainability, MDPI, vol. 16(2), pages 1-47, January.
    11. Essam A. Al-Ammar & Ghazi A. Ghazi & Wonsuk Ko, 2018. "Impact of Ambient Temperature on Shunt Capacitor Placement in a Distorted Radial Distribution System," Energies, MDPI, vol. 11(6), pages 1-17, June.
    12. Peter Makeen & Hani A. Ghali & Saim Memon & Fang Duan, 2023. "Insightful Electric Vehicle Utility Grid Aggregator Methodology Based on the G2V and V2G Technologies in Egypt," Sustainability, MDPI, vol. 15(2), pages 1-14, January.
    13. Salem Alkhalaf & Tomonobu Senjyu & Ayat Ali Saleh & Ashraf M. Hemeida & Al-Attar Ali Mohamed, 2019. "A MODA and MODE Comparison for Optimal Allocation of Distributed Generations with Different Load Levels," Sustainability, MDPI, vol. 11(19), pages 1-18, September.
    14. Mohamed Tolba & Hegazy Rezk & Ahmed A. Zaki Diab & Mujahed Al-Dhaifallah, 2018. "A Novel Robust Methodology Based Salp Swarm Algorithm for Allocation and Capacity of Renewable Distributed Generators on Distribution Grids," Energies, MDPI, vol. 11(10), pages 1-34, September.
    15. Sherif M. Ismael & Shady H. E. Abdel Aleem & Almoataz Y. Abdelaziz & Ahmed F. Zobaa, 2019. "Probabilistic Hosting Capacity Enhancement in Non-Sinusoidal Power Distribution Systems Using a Hybrid PSOGSA Optimization Algorithm," Energies, MDPI, vol. 12(6), pages 1-23, March.
    16. Raavi Satish & Kanchapogu Vaisakh & Almoataz Y. Abdelaziz & Adel El-Shahat, 2021. "A Novel Three-Phase Power Flow Algorithm for the Evaluation of the Impact of Renewable Energy Sources and D-STATCOM Devices on Unbalanced Radial Distribution Networks," Energies, MDPI, vol. 14(19), pages 1-21, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pengfei Wang & Jialiang Yi & Mansoureh Zangiabadi & Pádraig Lyons & Phil Taylor, 2017. "Evaluation of Voltage Control Approaches for Future Smart Distribution Networks," Energies, MDPI, vol. 10(8), pages 1-17, August.
    2. Andrés Henao-Muñoz & Andrés Saavedra-Montes & Carlos Ramos-Paja, 2018. "Optimal Power Dispatch of Small-Scale Standalone Microgrid Located in Colombian Territory," Energies, MDPI, vol. 11(7), pages 1-20, July.
    3. Yongsheng Cao & Guanglin Zhang & Demin Li & Lin Wang & Zongpeng Li, 2018. "Online Energy Management and Heterogeneous Task Scheduling for Smart Communities with Residential Cogeneration and Renewable Energy," Energies, MDPI, vol. 11(8), pages 1-20, August.
    4. Carlos Robles Algarín & John Taborda Giraldo & Omar Rodríguez Álvarez, 2017. "Fuzzy Logic Based MPPT Controller for a PV System," Energies, MDPI, vol. 10(12), pages 1-18, December.
    5. Thai-Thanh Nguyen & Hyeong-Jun Yoo & Hak-Man Kim & Huy Nguyen-Duc, 2018. "Direct Phase Angle and Voltage Amplitude Model Predictive Control of a Power Converter for Microgrid Applications," Energies, MDPI, vol. 11(9), pages 1-21, August.
    6. Marcolino Díaz-Araujo & Aurelio Medina & Rafael Cisneros-Magaña & Amner Ramírez, 2018. "Periodic Steady State Assessment of Microgrids with Photovoltaic Generation Using Limit Cycle Extrapolation and Cubic Splines," Energies, MDPI, vol. 11(8), pages 1-16, August.
    7. Essam A. Al-Ammar & Ghazi A. Ghazi & Wonsuk Ko, 2018. "Impact of Ambient Temperature on Shunt Capacitor Placement in a Distorted Radial Distribution System," Energies, MDPI, vol. 11(6), pages 1-17, June.
    8. Jinming Jiang & Xindong Wei & Weijun Gao & Soichiro Kuroki & Zhonghui Liu, 2018. "Reliability and Maintenance Prioritization Analysis of Combined Cooling, Heating and Power Systems," Energies, MDPI, vol. 11(6), pages 1-24, June.
    9. Hammerschmitt, Bruno Knevitz & Guarda, Fernando Guilherme Kaehler & Lucchese, Felipe Cirolini & Abaide, Alzenira da Rosa, 2022. "Complementary thermal energy generation associated with renewable energies using Artificial Intelligence," Energy, Elsevier, vol. 254(PB).
    10. Mohammed Elsayed Lotfy & Tomonobu Senjyu & Mohammed Abdel-Fattah Farahat & Amal Farouq Abdel-Gawad & Hidehito Matayoshi, 2017. "A Polar Fuzzy Control Scheme for Hybrid Power System Using Vehicle-To-Grid Technique," Energies, MDPI, vol. 10(8), pages 1-25, July.
    11. Hongyue Li & Xihuai Wang & Jianmei Xiao, 2018. "Differential Evolution-Based Load Frequency Robust Control for Micro-Grids with Energy Storage Systems," Energies, MDPI, vol. 11(7), pages 1-19, June.
    12. Hu, Yuan & Peng, Ling & Li, Xiang & Yao, Xiaojing & Lin, Hui & Chi, Tianhe, 2018. "A novel evolution tree for analyzing the global energy consumption structure," Energy, Elsevier, vol. 147(C), pages 1177-1187.
    13. Il-Seok Choi & Akhtar Hussain & Van-Hai Bui & Hak-Man Kim, 2018. "A Multi-Agent System-Based Approach for Optimal Operation of Building Microgrids with Rooftop Greenhouse," Energies, MDPI, vol. 11(7), pages 1-24, July.
    14. Chen, J.J. & Zhao, Y.L. & Peng, K. & Wu, P.Z., 2017. "Optimal trade-off planning for wind-solar power day-ahead scheduling under uncertainties," Energy, Elsevier, vol. 141(C), pages 1969-1981.
    15. Shayesteh, E. & Yu, J. & Hilber, P., 2018. "Maintenance optimization of power systems with renewable energy sources integrated," Energy, Elsevier, vol. 149(C), pages 577-586.
    16. Zeb, Kamran & Islam, Saif Ul & Khan, Imran & Uddin, Waqar & Ishfaq, M. & Curi Busarello, Tiago Davi & Muyeen, S.M. & Ahmad, Iftikhar & Kim, H.J., 2022. "Faults and Fault Ride Through strategies for grid-connected photovoltaic system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    17. Alenka Hren & Franc Mihalič, 2018. "An Improved SPWM-Based Control with Over-Modulation Strategy of the Third Harmonic Elimination for a Single-Phase Inverter," Energies, MDPI, vol. 11(4), pages 1-20, April.
    18. Geng, Zhiqiang & Li, Yanan & Han, Yongming & Zhu, Qunxiong, 2018. "A novel self-organizing cosine similarity learning network: An application to production prediction of petrochemical systems," Energy, Elsevier, vol. 142(C), pages 400-410.
    19. Gao, Zhikun & Yu, Junqi & Zhao, Anjun & Hu, Qun & Yang, Siyuan, 2022. "A hybrid method of cooling load forecasting for large commercial building based on extreme learning machine," Energy, Elsevier, vol. 238(PC).
    20. Deockho Kim & Jin Hur, 2017. "Stochastic Prediction of Wind Generating Resources Using the Enhanced Ensemble Model for Jeju Island’s Wind Farms in South Korea," Sustainability, MDPI, vol. 9(5), pages 1-12, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:245-:d:127831. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.