IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i8p2104-d163465.html
   My bibliography  Save this article

Online Energy Management and Heterogeneous Task Scheduling for Smart Communities with Residential Cogeneration and Renewable Energy

Author

Listed:
  • Yongsheng Cao

    (College of Information Science and Technology, Engineering Research Center of Digitized Textile and Fashion Technology, Ministry of Education, Donghua University, Shanghai 201620, China)

  • Guanglin Zhang

    (College of Information Science and Technology, Engineering Research Center of Digitized Textile and Fashion Technology, Ministry of Education, Donghua University, Shanghai 201620, China)

  • Demin Li

    (College of Information Science and Technology, Engineering Research Center of Digitized Textile and Fashion Technology, Ministry of Education, Donghua University, Shanghai 201620, China)

  • Lin Wang

    (Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Zongpeng Li

    (School of Computer Science, Wuhan University, Wuhan 430072, China)

Abstract

With the development of renewable energy technology and communication technology in recent years, many residents now utilize renewable energy devices in their residences with energy storage systems. We have full confidence in the promising prospects of sharing idle energy with others in a community. However, it is a great challenge to share residents’ energy with others in a community to minimize the total cost of all residents. In this paper, we study the problem of energy management and task scheduling for a community with renewable energy and residential cogeneration, such as residential combined heat and power system (resCHP) to pay the least electricity bill. We take elastic and inelastic load demands into account which are delay intolerant and delay tolerant tasks in the community. The minimum cost problem of a non-cooperative community is extracted into a random non-convex optimization problem with some physical constraints. Our objective is to minimize the time-average cost for each resident in the community, including the cost of the external grid and natural gas. The Lyapunov optimization theory and a primal-dual gradient method are adopted to tackle this problem, which needs no future data and has low computational complexity. Furthermore, we design a cooperative renewable energy sharing algorithm based on State-action-reward-state-action (Sarsa) Algorithm, in the condition that each residence in the community is able to communicate with its neighbors by a central controller. Finally, extensive simulations are presented to validate the proposed algorithms by using practical data.

Suggested Citation

  • Yongsheng Cao & Guanglin Zhang & Demin Li & Lin Wang & Zongpeng Li, 2018. "Online Energy Management and Heterogeneous Task Scheduling for Smart Communities with Residential Cogeneration and Renewable Energy," Energies, MDPI, vol. 11(8), pages 1-20, August.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2104-:d:163465
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/8/2104/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/8/2104/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ting-Chia Ou, 2018. "Design of a Novel Voltage Controller for Conversion of Carbon Dioxide into Clean Fuels Using the Integration of a Vanadium Redox Battery with Solar Energy," Energies, MDPI, vol. 11(3), pages 1-10, February.
    2. Hong, Chih-Ming & Ou, Ting-Chia & Lu, Kai-Hung, 2013. "Development of intelligent MPPT (maximum power point tracking) control for a grid-connected hybrid power generation system," Energy, Elsevier, vol. 50(C), pages 270-279.
    3. Ali Mohammadi & Mohammad Javad Dehghani & Elham Ghazizadeh, 2018. "Game Theoretic Spectrum Allocation in Femtocell Networks for Smart Electric Distribution Grids," Energies, MDPI, vol. 11(7), pages 1-18, June.
    4. Qian Liu & Rui Wang & Yan Zhang & Guohua Wu & Jianmai Shi, 2018. "An Optimal and Distributed Demand Response Strategy for Energy Internet Management," Energies, MDPI, vol. 11(1), pages 1-16, January.
    5. Van-Hai Bui & Akhtar Hussain & Hak-Man Kim, 2017. "Optimal Operation of Microgrids Considering Auto-Configuration Function Using Multiagent System," Energies, MDPI, vol. 10(10), pages 1-16, September.
    6. Motevasel, Mehdi & Seifi, Ali Reza & Niknam, Taher, 2013. "Multi-objective energy management of CHP (combined heat and power)-based micro-grid," Energy, Elsevier, vol. 51(C), pages 123-136.
    7. Ou, Ting-Chia & Hong, Chih-Ming, 2014. "Dynamic operation and control of microgrid hybrid power systems," Energy, Elsevier, vol. 66(C), pages 314-323.
    8. Ting-Chia Ou & Kai-Hung Lu & Chiou-Jye Huang, 2017. "Improvement of Transient Stability in a Hybrid Power Multi-System Using a Designed NIDC (Novel Intelligent Damping Controller)," Energies, MDPI, vol. 10(4), pages 1-16, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adriano da S. Marques & Monica Carvalho & Álvaro A. V. Ochoa & Ronelly J. Souza & Carlos A. C. dos Santos, 2020. "Exergoeconomic Assessment of a Compact Electricity-Cooling Cogeneration Unit," Energies, MDPI, vol. 13(20), pages 1-18, October.
    2. Sadiq Ahmad & Ayaz Ahmad & Muhammad Naeem & Waleed Ejaz & Hyung Seok Kim, 2018. "A Compendium of Performance Metrics, Pricing Schemes, Optimization Objectives, and Solution Methodologies of Demand Side Management for the Smart Grid," Energies, MDPI, vol. 11(10), pages 1-33, October.
    3. Troy Malatesta & Qilin Li & Jessica K. Breadsell & Christine Eon, 2023. "Distinguishing Household Groupings within a Precinct Based on Energy Usage Patterns Using Machine Learning Analysis," Energies, MDPI, vol. 16(10), pages 1-25, May.
    4. Carlos Cruz & Esther Palomar & Ignacio Bravo & Alfredo Gardel, 2020. "Cooperative Demand Response Framework for a Smart Community Targeting Renewables: Testbed Implementation and Performance Evaluation," Energies, MDPI, vol. 13(11), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrés Henao-Muñoz & Andrés Saavedra-Montes & Carlos Ramos-Paja, 2018. "Optimal Power Dispatch of Small-Scale Standalone Microgrid Located in Colombian Territory," Energies, MDPI, vol. 11(7), pages 1-20, July.
    2. Athila Quaresma Santos & Zheng Ma & Casper Gellert Olsen & Bo Nørregaard Jørgensen, 2018. "Framework for Microgrid Design Using Social, Economic, and Technical Analysis," Energies, MDPI, vol. 11(10), pages 1-22, October.
    3. Il-Seok Choi & Akhtar Hussain & Van-Hai Bui & Hak-Man Kim, 2018. "A Multi-Agent System-Based Approach for Optimal Operation of Building Microgrids with Rooftop Greenhouse," Energies, MDPI, vol. 11(7), pages 1-24, July.
    4. Gao, Zhikun & Yu, Junqi & Zhao, Anjun & Hu, Qun & Yang, Siyuan, 2022. "A hybrid method of cooling load forecasting for large commercial building based on extreme learning machine," Energy, Elsevier, vol. 238(PC).
    5. Pengfei Wang & Jialiang Yi & Mansoureh Zangiabadi & Pádraig Lyons & Phil Taylor, 2017. "Evaluation of Voltage Control Approaches for Future Smart Distribution Networks," Energies, MDPI, vol. 10(8), pages 1-17, August.
    6. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    7. Carlos Robles Algarín & John Taborda Giraldo & Omar Rodríguez Álvarez, 2017. "Fuzzy Logic Based MPPT Controller for a PV System," Energies, MDPI, vol. 10(12), pages 1-18, December.
    8. Thai-Thanh Nguyen & Hyeong-Jun Yoo & Hak-Man Kim & Huy Nguyen-Duc, 2018. "Direct Phase Angle and Voltage Amplitude Model Predictive Control of a Power Converter for Microgrid Applications," Energies, MDPI, vol. 11(9), pages 1-21, August.
    9. Marcolino Díaz-Araujo & Aurelio Medina & Rafael Cisneros-Magaña & Amner Ramírez, 2018. "Periodic Steady State Assessment of Microgrids with Photovoltaic Generation Using Limit Cycle Extrapolation and Cubic Splines," Energies, MDPI, vol. 11(8), pages 1-16, August.
    10. Jinming Jiang & Xindong Wei & Weijun Gao & Soichiro Kuroki & Zhonghui Liu, 2018. "Reliability and Maintenance Prioritization Analysis of Combined Cooling, Heating and Power Systems," Energies, MDPI, vol. 11(6), pages 1-24, June.
    11. Mohammed Elsayed Lotfy & Tomonobu Senjyu & Mohammed Abdel-Fattah Farahat & Amal Farouq Abdel-Gawad & Hidehito Matayoshi, 2017. "A Polar Fuzzy Control Scheme for Hybrid Power System Using Vehicle-To-Grid Technique," Energies, MDPI, vol. 10(8), pages 1-25, July.
    12. Hongyue Li & Xihuai Wang & Jianmei Xiao, 2018. "Differential Evolution-Based Load Frequency Robust Control for Micro-Grids with Energy Storage Systems," Energies, MDPI, vol. 11(7), pages 1-19, June.
    13. Luis Alejandro Arias & Edwin Rivas & Francisco Santamaria & Victor Hernandez, 2018. "A Review and Analysis of Trends Related to Demand Response," Energies, MDPI, vol. 11(7), pages 1-24, June.
    14. Chen, J.J. & Zhao, Y.L. & Peng, K. & Wu, P.Z., 2017. "Optimal trade-off planning for wind-solar power day-ahead scheduling under uncertainties," Energy, Elsevier, vol. 141(C), pages 1969-1981.
    15. Jun-Ho Huh & Seong-Kyu Kim, 2019. "The Blockchain Consensus Algorithm for Viable Management of New and Renewable Energies," Sustainability, MDPI, vol. 11(11), pages 1-26, June.
    16. Deockho Kim & Jin Hur, 2017. "Stochastic Prediction of Wind Generating Resources Using the Enhanced Ensemble Model for Jeju Island’s Wind Farms in South Korea," Sustainability, MDPI, vol. 9(5), pages 1-12, May.
    17. Qian Liu & Rui Wang & Yan Zhang & Guohua Wu & Jianmai Shi, 2018. "An Optimal and Distributed Demand Response Strategy for Energy Internet Management," Energies, MDPI, vol. 11(1), pages 1-16, January.
    18. Neeraj Priyadarshi & Vigna K. Ramachandaramurthy & Sanjeevikumar Padmanaban & Farooque Azam, 2019. "An Ant Colony Optimized MPPT for Standalone Hybrid PV-Wind Power System with Single Cuk Converter," Energies, MDPI, vol. 12(1), pages 1-23, January.
    19. Karadede, Yusuf & Ozdemir, Gultekin & Aydemir, Erdal, 2017. "Breeder hybrid algorithm approach for natural gas demand forecasting model," Energy, Elsevier, vol. 141(C), pages 1269-1284.
    20. Jaewan Suh & Sungchul Hwang & Gilsoo Jang, 2017. "Development of a Transmission and Distribution Integrated Monitoring and Analysis System for High Distributed Generation Penetration," Energies, MDPI, vol. 10(9), pages 1-15, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2104-:d:163465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.