IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i3p524-d133946.html
   My bibliography  Save this article

Design of a Novel Voltage Controller for Conversion of Carbon Dioxide into Clean Fuels Using the Integration of a Vanadium Redox Battery with Solar Energy

Author

Listed:
  • Ting-Chia Ou

    (Institute of Nuclear Energy Research, Taoyuan 32546, Taiwan)

Abstract

This letter presents a design for a novel voltage controller (NVC) which can exhibit three different reactions using the integration of a vanadium redox battery (VRB) with solar energy, and uses only electrochemical potentials with optimal external bias voltage control to carry out hydrogen production and the conversion of carbon dioxide (CO 2 ) into methane and methanol. This NVC is simply constructed by using dynamic switch and control strategies with a time-variant control system. In this design, the interval voltage bias solutions obtained by the proposed NVC exhibit better voltage ranges and good agreement with the practical scenarios, which will bring significant benefits to operation for continuous reduction of CO 2 into value-added clean fuels using the integration of a VRB with solar energy or any other renewable energy resource for future applications.

Suggested Citation

  • Ting-Chia Ou, 2018. "Design of a Novel Voltage Controller for Conversion of Carbon Dioxide into Clean Fuels Using the Integration of a Vanadium Redox Battery with Solar Energy," Energies, MDPI, vol. 11(3), pages 1-10, February.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:524-:d:133946
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/3/524/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/3/524/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qingwu Gong & Jiazhi Lei, 2017. "Design of a Bidirectional Energy Storage System for a Vanadium Redox Flow Battery in a Microgrid with SOC Estimation," Sustainability, MDPI, vol. 9(3), pages 1-15, March.
    2. Zheng, Qiong & Li, Xianfeng & Cheng, Yuanhui & Ning, Guiling & Xing, Feng & Zhang, Huamin, 2014. "Development and perspective in vanadium flow battery modeling," Applied Energy, Elsevier, vol. 132(C), pages 254-266.
    3. Ou, Ting-Chia & Hong, Chih-Ming, 2014. "Dynamic operation and control of microgrid hybrid power systems," Energy, Elsevier, vol. 66(C), pages 314-323.
    4. Vynnycky, M., 2011. "Analysis of a model for the operation of a vanadium redox battery," Energy, Elsevier, vol. 36(4), pages 2242-2256.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Athila Quaresma Santos & Zheng Ma & Casper Gellert Olsen & Bo Nørregaard Jørgensen, 2018. "Framework for Microgrid Design Using Social, Economic, and Technical Analysis," Energies, MDPI, vol. 11(10), pages 1-22, October.
    2. Gao, Zhikun & Yu, Junqi & Zhao, Anjun & Hu, Qun & Yang, Siyuan, 2022. "A hybrid method of cooling load forecasting for large commercial building based on extreme learning machine," Energy, Elsevier, vol. 238(PC).
    3. Il-Seok Choi & Akhtar Hussain & Van-Hai Bui & Hak-Man Kim, 2018. "A Multi-Agent System-Based Approach for Optimal Operation of Building Microgrids with Rooftop Greenhouse," Energies, MDPI, vol. 11(7), pages 1-24, July.
    4. Sun, Qirun & Wu, Zhi & Gu, Wei & Zhu, Tao & Zhong, Lei & Gao, Ting, 2021. "Flexible expansion planning of distribution system integrating multiple renewable energy sources: An approximate dynamic programming approach," Energy, Elsevier, vol. 226(C).
    5. Erfan Babaee Tirkolaee & Ali Asghar Rahmani Hosseinabadi & Mehdi Soltani & Arun Kumar Sangaiah & Jin Wang, 2018. "A Hybrid Genetic Algorithm for Multi-Trip Green Capacitated Arc Routing Problem in the Scope of Urban Services," Sustainability, MDPI, vol. 10(5), pages 1-21, April.
    6. Vaclovas Miskinis & Arvydas Galinis & Inga Konstantinaviciute & Vidas Lekavicius & Eimantas Neniskis, 2019. "Comparative Analysis of the Energy Sector Development Trends and Forecast of Final Energy Demand in the Baltic States," Sustainability, MDPI, vol. 11(2), pages 1-27, January.
    7. Andrés Henao-Muñoz & Andrés Saavedra-Montes & Carlos Ramos-Paja, 2018. "Optimal Power Dispatch of Small-Scale Standalone Microgrid Located in Colombian Territory," Energies, MDPI, vol. 11(7), pages 1-20, July.
    8. Yongsheng Cao & Guanglin Zhang & Demin Li & Lin Wang & Zongpeng Li, 2018. "Online Energy Management and Heterogeneous Task Scheduling for Smart Communities with Residential Cogeneration and Renewable Energy," Energies, MDPI, vol. 11(8), pages 1-20, August.
    9. Jun-Ho Huh & Seong-Kyu Kim, 2019. "The Blockchain Consensus Algorithm for Viable Management of New and Renewable Energies," Sustainability, MDPI, vol. 11(11), pages 1-26, June.
    10. Seong-Kyu Kim & Jun-Ho Huh, 2020. "Blockchain of Carbon Trading for UN Sustainable Development Goals," Sustainability, MDPI, vol. 12(10), pages 1-32, May.
    11. Jinming Jiang & Xindong Wei & Weijun Gao & Soichiro Kuroki & Zhonghui Liu, 2018. "Reliability and Maintenance Prioritization Analysis of Combined Cooling, Heating and Power Systems," Energies, MDPI, vol. 11(6), pages 1-24, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, X.L. & Zhao, T.S. & An, L. & Zeng, Y.K. & Yan, X.H., 2015. "A vanadium redox flow battery model incorporating the effect of ion concentrations on ion mobility," Applied Energy, Elsevier, vol. 158(C), pages 157-166.
    2. Yin, Cong & Guo, Shaoyun & Fang, Honglin & Liu, Jiayi & Li, Yang & Tang, Hao, 2015. "Numerical and experimental studies of stack shunt current for vanadium redox flow battery," Applied Energy, Elsevier, vol. 151(C), pages 237-248.
    3. Fangyi Li & Zhaoyang Ye & Xilin Xiao & Dawei Ma, 2019. "Environmental Benefits of Stock Evolution of Coal-Fired Power Generators in China," Sustainability, MDPI, vol. 11(19), pages 1-17, October.
    4. Yuan, Chenguang & Xing, Feng & Zheng, Qiong & Zhang, Huamin & Li, Xianfeng & Ma, Xiangkun, 2020. "Factor analysis of the uniformity of the transfer current density in vanadium flow battery by an improved three-dimensional transient model," Energy, Elsevier, vol. 194(C).
    5. Pengfei Wang & Jialiang Yi & Mansoureh Zangiabadi & Pádraig Lyons & Phil Taylor, 2017. "Evaluation of Voltage Control Approaches for Future Smart Distribution Networks," Energies, MDPI, vol. 10(8), pages 1-17, August.
    6. Nantian Huang & Hua Peng & Guowei Cai & Jikai Chen, 2016. "Power Quality Disturbances Feature Selection and Recognition Using Optimal Multi-Resolution Fast S-Transform and CART Algorithm," Energies, MDPI, vol. 9(11), pages 1-21, November.
    7. Li, Yifeng & Bao, Jie & Skyllas-Kazacos, Maria & Akter, Md Parvez & Zhang, Xinan & Fletcher, John, 2019. "Studies on dynamic responses and impedance of the vanadium redox flow battery," Applied Energy, Elsevier, vol. 237(C), pages 91-102.
    8. Andrés Henao-Muñoz & Andrés Saavedra-Montes & Carlos Ramos-Paja, 2018. "Optimal Power Dispatch of Small-Scale Standalone Microgrid Located in Colombian Territory," Energies, MDPI, vol. 11(7), pages 1-20, July.
    9. Dagnachew, Anteneh G. & Lucas, Paul L. & Hof, Andries F. & Gernaat, David E.H.J. & de Boer, Harmen-Sytze & van Vuuren, Detlef P., 2017. "The role of decentralized systems in providing universal electricity access in Sub-Saharan Africa – A model-based approach," Energy, Elsevier, vol. 139(C), pages 184-195.
    10. Furqan Asghar & Muhammad Talha & Sung Ho Kim, 2017. "Robust Frequency and Voltage Stability Control Strategy for Standalone AC/DC Hybrid Microgrid," Energies, MDPI, vol. 10(6), pages 1-20, May.
    11. Tong, Zi-Xiang & Li, Ming-Jia & He, Ya-Ling & Tan, Hou-Zhang, 2017. "Simulation of real time particle deposition and removal processes on tubes by coupled numerical method," Applied Energy, Elsevier, vol. 185(P2), pages 2181-2193.
    12. Ahmad Khan, Aftab & Naeem, Muhammad & Iqbal, Muhammad & Qaisar, Saad & Anpalagan, Alagan, 2016. "A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1664-1683.
    13. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    14. Yongsheng Cao & Guanglin Zhang & Demin Li & Lin Wang & Zongpeng Li, 2018. "Online Energy Management and Heterogeneous Task Scheduling for Smart Communities with Residential Cogeneration and Renewable Energy," Energies, MDPI, vol. 11(8), pages 1-20, August.
    15. Chettibi, N. & Mellit, A., 2018. "Intelligent control strategy for a grid connected PV/SOFC/BESS energy generation system," Energy, Elsevier, vol. 147(C), pages 239-262.
    16. Carlos Robles Algarín & John Taborda Giraldo & Omar Rodríguez Álvarez, 2017. "Fuzzy Logic Based MPPT Controller for a PV System," Energies, MDPI, vol. 10(12), pages 1-18, December.
    17. Sarid, A. & Tzur, M., 2018. "The multi-scale generation and transmission expansion model," Energy, Elsevier, vol. 148(C), pages 977-991.
    18. Bruni, G. & Cordiner, S. & Mulone, V. & Sinisi, V. & Spagnolo, F., 2016. "Energy management in a domestic microgrid by means of model predictive controllers," Energy, Elsevier, vol. 108(C), pages 119-131.
    19. Obara, Shin'ya & Morel Rios, Jorge Ricardo & Okada, Masaki, 2015. "Control of cyclic fluctuations in solid oxide fuel cell cogeneration accompanied by photovoltaics," Energy, Elsevier, vol. 91(C), pages 994-1008.
    20. Umeozor, Evar Chinedu & Trifkovic, Milana, 2016. "Operational scheduling of microgrids via parametric programming," Applied Energy, Elsevier, vol. 180(C), pages 672-681.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:524-:d:133946. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.