IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6152-d644148.html
   My bibliography  Save this article

A Novel Three-Phase Power Flow Algorithm for the Evaluation of the Impact of Renewable Energy Sources and D-STATCOM Devices on Unbalanced Radial Distribution Networks

Author

Listed:
  • Raavi Satish

    (Department of Electrical and Electronics Engineering, Anil Neerukonda Institute of Technology and Science, Visakhapatnam 531162, Andhra Pradesh, India)

  • Kanchapogu Vaisakh

    (Department of Electrical Engineering, Andhra University, Visakhapatnam 530003, Andhra Pradesh, India)

  • Almoataz Y. Abdelaziz

    (Faculty of Engineering and Technology, Future University in Egypt, Cairo 11835, Egypt)

  • Adel El-Shahat

    (Energy Technology Program, School of Engineering Technology, Purdue University, West Lafayette, IN 47907, USA)

Abstract

The impacts of the fast growth of renewable energy sources (RESs) and distribution static synchronous compensators (D-STATCOMs) on unbalanced radial distribution networks (URDNs) are analyzed with three-phase power flow algorithms (PFAs). As the URDNs are unbalanced, they can experience voltage unbalance (VU). This paper proposes a novel three-phase PFA for URDNs with multiple RES and D-STATCOM device integrations. The bus number matrix (BNM) and branch number matrix (BRNM) developed in this paper make the implementation of the proposed PFA simple. These matrices are developed to store the bus numbers and branch numbers of newly created sections of the URDN. Both PQ and PV modeling of RES and PV modeling of D-STATCOM devices are effectively integrated into the proposed three-phase PFA. The accuracy of the proposed PFA has been tested on the IEEE-13 bus URDN and the results are found to be accurate with the IEEE results. Several study examples have been conducted on the IEEE-13 bus and the IEEE-34 bus URDNs with multiple integrations of three-phase RESs and three-phase D-STATCOMs. Test results indicate that these integrations improve the voltage profile, reduce the power loss and reduce the severity of the VU.

Suggested Citation

  • Raavi Satish & Kanchapogu Vaisakh & Almoataz Y. Abdelaziz & Adel El-Shahat, 2021. "A Novel Three-Phase Power Flow Algorithm for the Evaluation of the Impact of Renewable Energy Sources and D-STATCOM Devices on Unbalanced Radial Distribution Networks," Energies, MDPI, vol. 14(19), pages 1-21, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6152-:d:644148
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6152/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6152/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohamed A. Tolba & Hegazy Rezk & Vladimir Tulsky & Ahmed A. Zaki Diab & Almoataz Y. Abdelaziz & Artem Vanin, 2018. "Impact of Optimum Allocation of Renewable Distributed Generations on Distribution Networks Based on Different Optimization Algorithms," Energies, MDPI, vol. 11(1), pages 1-33, January.
    2. Fco. Javier Zarco-Soto & Pedro J. Zarco-Periñán & Jose L. Martínez-Ramos, 2021. "Centralized Control of Distribution Networks with High Penetration of Renewable Energies," Energies, MDPI, vol. 14(14), pages 1-13, July.
    3. Filip Relić & Predrag Marić & Hrvoje Glavaš & Ivica Petrović, 2020. "Influence of FACTS Device Implementation on Performance of Distribution Network with Integrated Renewable Energy Sources," Energies, MDPI, vol. 13(20), pages 1-15, October.
    4. Noah Serem & Lawrence K. Letting & Josiah Munda, 2021. "Voltage Profile and Sensitivity Analysis for a Grid Connected Solar, Wind and Small Hydro Hybrid System," Energies, MDPI, vol. 14(12), pages 1-26, June.
    5. Sirjani, Reza & Rezaee Jordehi, Ahmad, 2017. "Optimal placement and sizing of distribution static compensator (D-STATCOM) in electric distribution networks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 688-694.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicholas D. de Andrade & Ruben B. Godoy & Edson A. Batista & Moacyr A. G. de Brito & Rafael L. R. Soares, 2022. "Embedded FPGA Controllers for Current Compensation Based on Modern Power Theories," Energies, MDPI, vol. 15(17), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    2. Chaymae Boubii & Ismail El Kafazi & Rachid Bannari & Brahim El Bhiri & Badre Bossoufi & Hossam Kotb & Kareem M. AboRas & Ahmed Emara & Badr Nasiri, 2024. "Synergizing Wind and Solar Power: An Advanced Control System for Grid Stability," Sustainability, MDPI, vol. 16(2), pages 1-47, January.
    3. Ewaoche John Okampo & Nnamdi Nwulu & Pitshou N. Bokoro, 2022. "Optimal Placement and Operation of FACTS Technologies in a Cyber-Physical Power System: Critical Review and Future Outlook," Sustainability, MDPI, vol. 14(13), pages 1-26, June.
    4. Reza Sirjani, 2018. "Optimal Placement and Sizing of PV-STATCOM in Power Systems Using Empirical Data and Adaptive Particle Swarm Optimization," Sustainability, MDPI, vol. 10(3), pages 1-15, March.
    5. Anderson Passos de Aragão & Patrícia Teixeira Leite Asano & Ricardo de Andrade Lira Rabêlo, 2020. "A Reservoir Operation Policy Using Inter-Basin Water Transfer for Maximizing Hydroelectric Benefits in Brazil," Energies, MDPI, vol. 13(10), pages 1-26, May.
    6. Paweł Albrechtowicz & Jerzy Szczepanik, 2021. "The Comparative Analysis of Phase Shifting Transformers," Energies, MDPI, vol. 14(14), pages 1-16, July.
    7. Wajahat Ullah Khan Tareen & Muhammad Aamir & Saad Mekhilef & Mutsuo Nakaoka & Mehdi Seyedmahmoudian & Ben Horan & Mudasir Ahmed Memon & Nauman Anwar Baig, 2018. "Mitigation of Power Quality Issues Due to High Penetration of Renewable Energy Sources in Electric Grid Systems Using Three-Phase APF/STATCOM Technologies: A Review," Energies, MDPI, vol. 11(6), pages 1-41, June.
    8. Salem Alkhalaf & Tomonobu Senjyu & Ayat Ali Saleh & Ashraf M. Hemeida & Al-Attar Ali Mohamed, 2019. "A MODA and MODE Comparison for Optimal Allocation of Distributed Generations with Different Load Levels," Sustainability, MDPI, vol. 11(19), pages 1-18, September.
    9. Syed Ali Abbas Kazmi & Usama Ameer Khan & Hafiz Waleed Ahmad & Sajid Ali & Dong Ryeol Shin, 2020. "A Techno-Economic Centric Integrated Decision-Making Planning Approach for Optimal Assets Placement in Meshed Distribution Network Across the Load Growth," Energies, MDPI, vol. 13(6), pages 1-71, March.
    10. Mahesh Kumar & Amir Mahmood Soomro & Waqar Uddin & Laveet Kumar, 2022. "Optimal Multi-Objective Placement and Sizing of Distributed Generation in Distribution System: A Comprehensive Review," Energies, MDPI, vol. 15(21), pages 1-48, October.
    11. Sherif M. Ismael & Shady H. E. Abdel Aleem & Almoataz Y. Abdelaziz & Ahmed F. Zobaa, 2019. "Probabilistic Hosting Capacity Enhancement in Non-Sinusoidal Power Distribution Systems Using a Hybrid PSOGSA Optimization Algorithm," Energies, MDPI, vol. 12(6), pages 1-23, March.
    12. Manuel Ayala-Chauvin & Bahodurjon S. Kavrakov & Jorge Buele & José Varela-Aldás, 2021. "Static Reactive Power Compensator Design, Based on Three-Phase Voltage Converter," Energies, MDPI, vol. 14(8), pages 1-16, April.
    13. Sohrab Mirsaeidi & Subash Devkota & Xiaojun Wang & Dimitrios Tzelepis & Ghulam Abbas & Ahmed Alshahir & Jinghan He, 2022. "A Review on Optimization Objectives for Power System Operation Improvement Using FACTS Devices," Energies, MDPI, vol. 16(1), pages 1-24, December.
    14. Peter Makeen & Hani A. Ghali & Saim Memon & Fang Duan, 2023. "Insightful Electric Vehicle Utility Grid Aggregator Methodology Based on the G2V and V2G Technologies in Egypt," Sustainability, MDPI, vol. 15(2), pages 1-14, January.
    15. David Abdul Konneh & Harun Or Rashid Howlader & Ryuto Shigenobu & Tomonobu Senjyu & Shantanu Chakraborty & Narayanan Krishna, 2019. "A Multi-Criteria Decision Maker for Grid-Connected Hybrid Renewable Energy Systems Selection Using Multi-Objective Particle Swarm Optimization," Sustainability, MDPI, vol. 11(4), pages 1-36, February.
    16. Szymon Żurek & Maksymilian Przygrodzki, 2023. "The Use of a Regulating Transformer for Shaping Power Flow in the Power System," Energies, MDPI, vol. 16(3), pages 1-27, February.
    17. Mahmoud G. Hemeida & Salem Alkhalaf & Al-Attar A. Mohamed & Abdalla Ahmed Ibrahim & Tomonobu Senjyu, 2020. "Distributed Generators Optimization Based on Multi-Objective Functions Using Manta Rays Foraging Optimization Algorithm (MRFO)," Energies, MDPI, vol. 13(15), pages 1-37, July.
    18. Kyu-Hyung Jo & Mun-Kyeom Kim, 2018. "Stochastic Unit Commitment Based on Multi-Scenario Tree Method Considering Uncertainty," Energies, MDPI, vol. 11(4), pages 1-17, March.
    19. Shazly A. Mohamed & Mohamed A. Tolba & Ayman A. Eisa & Ali M. El-Rifaie, 2021. "Comprehensive Modeling and Control of Grid-Connected Hybrid Energy Sources Using MPPT Controller," Energies, MDPI, vol. 14(16), pages 1-22, August.
    20. Chaymae Boubii & Ismail El Kafazi & Rachid Bannari & Brahim El Bhiri & Saleh Mobayen & Anton Zhilenkov & Badre Bossoufi, 2023. "Integrated Control and Optimization for Grid-Connected Photovoltaic Systems: A Model-Predictive and PSO Approach," Energies, MDPI, vol. 16(21), pages 1-22, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6152-:d:644148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.