IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i13p7707-d846625.html
   My bibliography  Save this article

Optimal Placement and Operation of FACTS Technologies in a Cyber-Physical Power System: Critical Review and Future Outlook

Author

Listed:
  • Ewaoche John Okampo

    (Department of Electrical and Electronic Engineering Technology, University of Johannesburg, P.O. Box 524, Doornfontein 2028, South Africa)

  • Nnamdi Nwulu

    (Department of Electrical and Electronic Engineering Science, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa)

  • Pitshou N. Bokoro

    (Department of Electrical and Electronic Engineering Technology, University of Johannesburg, P.O. Box 524, Doornfontein 2028, South Africa)

Abstract

With the current transitioning and increasing complexity of power systems owing to the continuous integration of distributed generators (DGs) and Flexible AC Transmission Systems (FACTS), power system quality and security studies have extended to incorporate the impacts of these technologies. This paper presents a review of the operation and reliability impacts of FACTS technologies in improving power quality and security in modern Cyber-Physical Power Systems (CPPS). While introducing DG to the power system helps to decentralize the network for easy accessibility and enhances clean energy system, it creates new challenges such as harmonics, voltage instability, and frequency distortion. These challenges can be tackled with FACTS devices which are flexible and dynamic smart electronic controllers used to stabilize power system parameters to improve power quality and reliability. This paper examines the current state-of-the-art optimization techniques and artificial intelligence and/or computational techniques for optimal placement and operation of FACTS devices. This review highlights the generational advancement of FACTS technologies and the different objectives of optimal placement and operation of these devices. Moreover, the concept of CPPS is discussed with the potential utilization of distribution-FACTS (D-FACTS) devices for network security. Furthermore, a bibliometric analysis was carried out to show research trend of FACTS utilization. The result presents future trajectories for power utility industries and researchers interested in power system optimization and the application of FACTS technologies in smart power system networks. Some of the significant findings leads to proposed demand-side management for placement of DGs and FACTS technologies as a more strategic optimal system sizing to minimize cost. It was also concluded that future design of FACTS/D-FACTS devices must consider and appreciate interactions with the automated systems of CPPS to enhance effective integration. To this end, design modification of the operational configuration of these devices with sensors for real-time synchronized control and interaction with other CPPS technologies is an area that requires more research attention in the future.

Suggested Citation

  • Ewaoche John Okampo & Nnamdi Nwulu & Pitshou N. Bokoro, 2022. "Optimal Placement and Operation of FACTS Technologies in a Cyber-Physical Power System: Critical Review and Future Outlook," Sustainability, MDPI, vol. 14(13), pages 1-26, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7707-:d:846625
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/13/7707/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/13/7707/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Filip Relić & Predrag Marić & Hrvoje Glavaš & Ivica Petrović, 2020. "Influence of FACTS Device Implementation on Performance of Distribution Network with Integrated Renewable Energy Sources," Energies, MDPI, vol. 13(20), pages 1-15, October.
    2. Guilherme Gonçalves Pinheiro & Carlos Henrique da Silva & Bruno P. B. Guimarães & Robson Bauwelz Gonzatti & Rondineli Rodrigues Pereira & Wilson Cesar Sant’Ana & Germano Lambert-Torres & Joselino Sant, 2022. "Power Flow Control Using Series Voltage Source Converters in Distribution Grids," Energies, MDPI, vol. 15(9), pages 1-22, May.
    3. Dawn, Subhojit & Tiwari, Prashant Kumar & Goswami, Arup Kumar, 2019. "An approach for long term economic operations of competitive power market by optimal combined scheduling of wind turbines and FACTS controllers," Energy, Elsevier, vol. 181(C), pages 709-723.
    4. Prajapati, Vijaykumar K. & Mahajan, Vasundhara, 2021. "Reliability assessment and congestion management of power system with energy storage system and uncertain renewable resources," Energy, Elsevier, vol. 215(PB).
    5. Harker Steele, Amanda J. & Burnett, J. Wesley & Bergstrom, John C., 2021. "The impact of variable renewable energy resources on power system reliability," Energy Policy, Elsevier, vol. 151(C).
    6. Li, Jia & Liu, Feng & Li, Zuyi & Mei, Shengwei & He, Guangyu, 2018. "Impacts and benefits of UPFC to wind power integration in unit commitment," Renewable Energy, Elsevier, vol. 116(PA), pages 570-583.
    7. Tong Kang & Jiangang Yao & ThanhLong Duong & Shengjie Yang & Xiangqian Zhu, 2017. "A Hybrid Approach for Power System Security Enhancement via Optimal Installation of Flexible AC Transmission System (FACTS) Devices," Energies, MDPI, vol. 10(9), pages 1-32, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ewaoche John Okampo & Nnamdi Nwulu & Pitshou N. Bokoro, 2022. "Optimization of Voltage Security with Placement of FACTS Device Using Modified Newton–Raphson Approach: A Case Study of Nigerian Transmission Network," Energies, MDPI, vol. 15(12), pages 1-17, June.
    2. Tong Kang & Jiangang Yao & Min Jin & Shengjie Yang & ThanhLong Duong, 2018. "A Novel Improved Cuckoo Search Algorithm for Parameter Estimation of Photovoltaic (PV) Models," Energies, MDPI, vol. 11(5), pages 1-31, April.
    3. Ali Elkamel, 2018. "Energy Production Systems," Energies, MDPI, vol. 11(10), pages 1-4, September.
    4. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2023. "Optimizing uploading and downloading pace distribution in system with two non-identical storage units," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    5. Yan, Rujing & Wang, Jiangjiang & Wang, Jiahao & Tian, Lei & Tang, Saiqiu & Wang, Yuwei & Zhang, Jing & Cheng, Youliang & Li, Yuan, 2022. "A two-stage stochastic-robust optimization for a hybrid renewable energy CCHP system considering multiple scenario-interval uncertainties," Energy, Elsevier, vol. 247(C).
    6. Mohsen Khalili & Touhid Poursheykh Aliasghari & Ebrahim Seifi Najmi & Almoataz Y. Abdelaziz & A. Abu-Siada & Saber Arabi Nowdeh, 2022. "Optimal Allocation of Distributed Thyristor Controlled Series Compensators in Power System Considering Overload, Voltage, and Losses with Reliability Effect," Energies, MDPI, vol. 15(20), pages 1-25, October.
    7. Ganesh Sampatrao Patil & Anwar Mulla & Taha Selim Ustun, 2022. "Impact of Wind Farm Integration on LMP in Deregulated Energy Markets," Sustainability, MDPI, vol. 14(7), pages 1-20, April.
    8. Saboori, Behnaz & Gholipour, Hassan F. & Rasoulinezhad, Ehsan & Ranjbar, Omid, 2022. "Renewable energy sources and unemployment rate: Evidence from the US states," Energy Policy, Elsevier, vol. 168(C).
    9. Chen, Hao & Yan, Haobo & Gong, Kai & Geng, Haopeng & Yuan, Xiao-Chen, 2022. "Assessing the business interruption costs from power outages in China," Energy Economics, Elsevier, vol. 105(C).
    10. Muhammad Salman Shahid & Seun Osonuga & Nana Kofi Twum-Duah & Sacha Hodencq & Benoit Delinchant & Frédéric Wurtz, 2023. "An Assessment of Energy Flexibility Solutions from the Perspective of Low-Tech," Energies, MDPI, vol. 16(7), pages 1-29, April.
    11. Mirzapour, Omid & Rui, Xinyang & Sahraei-Ardakani, Mostafa, 2023. "Transmission impedance control impacts on carbon emissions and renewable energy curtailment," Energy, Elsevier, vol. 278(C).
    12. Siavash Asiaban & Nezmin Kayedpour & Arash E. Samani & Dimitar Bozalakov & Jeroen D. M. De Kooning & Guillaume Crevecoeur & Lieven Vandevelde, 2021. "Wind and Solar Intermittency and the Associated Integration Challenges: A Comprehensive Review Including the Status in the Belgian Power System," Energies, MDPI, vol. 14(9), pages 1-41, May.
    13. Ashish Dandotia & Mukesh Kumar Gupta & Malay Kumar Banerjee & Suraj Kumar Singh & Bojan Đurin & Dragana Dogančić & Nikola Kranjčić, 2023. "Optimal Placement and Size of SVC with Cost-Effective Function Using Genetic Algorithm for Voltage Profile Improvement in Renewable Integrated Power Systems," Energies, MDPI, vol. 16(6), pages 1-20, March.
    14. Arup Das & Subhojit Dawn & Sadhan Gope & Taha Selim Ustun, 2022. "A Strategy for System Risk Mitigation Using FACTS Devices in a Wind Incorporated Competitive Power System," Sustainability, MDPI, vol. 14(13), pages 1-21, July.
    15. Paweł Albrechtowicz & Jerzy Szczepanik, 2021. "The Comparative Analysis of Phase Shifting Transformers," Energies, MDPI, vol. 14(14), pages 1-16, July.
    16. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Unrepairable system with consecutively used imperfect storage units," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    17. Raavi Satish & Kanchapogu Vaisakh & Almoataz Y. Abdelaziz & Adel El-Shahat, 2021. "A Novel Three-Phase Power Flow Algorithm for the Evaluation of the Impact of Renewable Energy Sources and D-STATCOM Devices on Unbalanced Radial Distribution Networks," Energies, MDPI, vol. 14(19), pages 1-21, September.
    18. Tao, Hu & Zhuang, Shan & Xue, Rui & Cao, Wei & Tian, Jinfang & Shan, Yuli, 2022. "Environmental Finance: An Interdisciplinary Review," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    19. Aslani, Mehrdad & Faraji, Jamal & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2022. "A novel clustering-based method for reliability assessment of cyber-physical microgrids considering cyber interdependencies and information transmission errors," Applied Energy, Elsevier, vol. 315(C).
    20. Ganesh Sampatrao Patil & Anwar Mulla & Subhojit Dawn & Taha Selim Ustun, 2022. "Profit Maximization with Imbalance Cost Improvement by Solar PV-Battery Hybrid System in Deregulated Power Market," Energies, MDPI, vol. 15(14), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7707-:d:846625. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.