IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i9p1305-d110622.html
   My bibliography  Save this article

A Hybrid Approach for Power System Security Enhancement via Optimal Installation of Flexible AC Transmission System (FACTS) Devices

Author

Listed:
  • Tong Kang

    (College of Electrical and Information Engineering, Hunan University, Changsha 410082, China)

  • Jiangang Yao

    (College of Electrical and Information Engineering, Hunan University, Changsha 410082, China)

  • ThanhLong Duong

    (Department of Electrical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam)

  • Shengjie Yang

    (College of Computer and Information Engineering, Hunan University of Commerce, Changsha 410205, China)

  • Xiangqian Zhu

    (College of Electrical and Information Engineering, Hunan University, Changsha 410082, China)

Abstract

Increasing demand for electricity has placed heavy stress on power system security. Therefore, this paper focuses on the problem of how to maximize power system static security in terms of branch loading and voltage level under normal operation and even the most critical single line contingency conditions. This paper proposes a hybrid approach to find out the optimal locations and settings of two classical types of flexible AC transmission system (FACTS) devices, namely thyristor-controlled series compensators (TCSCs) and static var compensators (SVCs) for solving this problem. Our proposed approach requires a two-step strategy. Firstly, the min cut algorithm (MCA) and tangent vector technique (TVT) are applied to determine the proper candidate locations of TCSC and SVC respectively so as to reduce the search scope for a solution to the problem, and then the cuckoo search algorithm (CSA) is employed to solve this problem by simultaneously optimizing the locations and settings for TCSC and SVC installation. The proposed hybrid approach has been verified on the IEEE 6-bus and modified IEEE 14-bus test systems. The results indicate that CSA outperforms particle swarm optimization (PSO), proving its effectiveness and potential, and they also show that our proposed hybrid approach can find the best locations and settings for TCSC and SVC devices as an effective way for enhancing power system static security by removing or alleviating the overloads and voltage violations under normal operation and even the most critical single line contingency conditions. Using this hybrid approach, the search space for solution to the problem becomes limited hence the computational burden will be decreased.

Suggested Citation

  • Tong Kang & Jiangang Yao & ThanhLong Duong & Shengjie Yang & Xiangqian Zhu, 2017. "A Hybrid Approach for Power System Security Enhancement via Optimal Installation of Flexible AC Transmission System (FACTS) Devices," Energies, MDPI, vol. 10(9), pages 1-32, September.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1305-:d:110622
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/9/1305/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/9/1305/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aaron Praktiknjo, 2016. "The Value of Lost Load for Sectoral Load Shedding Measures: The German Case with 51 Sectors," Energies, MDPI, vol. 9(2), pages 1-17, February.
    2. Jordehi, A. Rezaee, 2015. "Particle swarm optimisation (PSO) for allocation of FACTS devices in electric transmission systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1260-1267.
    3. Ikram Ullah & Wolfgang Gawlik & Peter Palensky, 2016. "Analysis of Power Network for Line Reactance Variation to Improve Total Transmission Capacity," Energies, MDPI, vol. 9(11), pages 1-20, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hana Merah & Abdelmalek Gacem & Djilani Ben Attous & Abderezak Lashab & Francisco Jurado & Mariam A. Sameh, 2022. "Sizing and Sitting of Static VAR Compensator (SVC) Using Hybrid Optimization of Combined Cuckoo Search (CS) and Antlion Optimization (ALO) Algorithms," Energies, MDPI, vol. 15(13), pages 1-20, July.
    2. Ewaoche John Okampo & Nnamdi Nwulu & Pitshou N. Bokoro, 2022. "Optimization of Voltage Security with Placement of FACTS Device Using Modified Newton–Raphson Approach: A Case Study of Nigerian Transmission Network," Energies, MDPI, vol. 15(12), pages 1-17, June.
    3. Ewaoche John Okampo & Nnamdi Nwulu & Pitshou N. Bokoro, 2022. "Optimal Placement and Operation of FACTS Technologies in a Cyber-Physical Power System: Critical Review and Future Outlook," Sustainability, MDPI, vol. 14(13), pages 1-26, June.
    4. Mohsen Khalili & Touhid Poursheykh Aliasghari & Ebrahim Seifi Najmi & Almoataz Y. Abdelaziz & A. Abu-Siada & Saber Arabi Nowdeh, 2022. "Optimal Allocation of Distributed Thyristor Controlled Series Compensators in Power System Considering Overload, Voltage, and Losses with Reliability Effect," Energies, MDPI, vol. 15(20), pages 1-25, October.
    5. Tong Kang & Jiangang Yao & Min Jin & Shengjie Yang & ThanhLong Duong, 2018. "A Novel Improved Cuckoo Search Algorithm for Parameter Estimation of Photovoltaic (PV) Models," Energies, MDPI, vol. 11(5), pages 1-31, April.
    6. Ashish Dandotia & Mukesh Kumar Gupta & Malay Kumar Banerjee & Suraj Kumar Singh & Bojan Đurin & Dragana Dogančić & Nikola Kranjčić, 2023. "Optimal Placement and Size of SVC with Cost-Effective Function Using Genetic Algorithm for Voltage Profile Improvement in Renewable Integrated Power Systems," Energies, MDPI, vol. 16(6), pages 1-20, March.
    7. Ismail Marouani & Tawfik Guesmi & Badr M. Alshammari & Khalid Alqunun & Ahmed S. Alshammari & Saleh Albadran & Hsan Hadj Abdallah & Salem Rahmani, 2023. "Optimized FACTS Devices for Power System Enhancement: Applications and Solving Methods," Sustainability, MDPI, vol. 15(12), pages 1-58, June.
    8. Ali Elkamel, 2018. "Energy Production Systems," Energies, MDPI, vol. 11(10), pages 1-4, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nolting, Lars & Praktiknjo, Aaron, 2019. "Techno-economic analysis of flexible heat pump controls," Applied Energy, Elsevier, vol. 238(C), pages 1417-1433.
    2. Majid Hashemi & Glenn P. Jenkins & Roop Jyoti & Aygul Ozbafli, 2018. "Evaluating the Cost to Industry of Electricity Outages," Development Discussion Papers 2018-14, JDI Executive Programs.
    3. Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020. "Heating with wind: Economics of heat pumps and variable renewables," Energy Economics, Elsevier, vol. 92(C).
    4. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    5. Elie Bouri & Joseph El Assad, 2016. "The Lebanese Electricity Woes: An Estimation of the Economical Costs of Power Interruptions," Energies, MDPI, vol. 9(8), pages 1-12, July.
    6. Edgar Ojeda Camargo & John E. Candelo-Becerra & Alcides Santander Mercado, 2019. "Lexicographic Multi-objective Optimisation of Hybrid Power Generation Systems for Communities in Non-Interconnected Zones," International Journal of Energy Economics and Policy, Econjournals, vol. 9(3), pages 205-217.
    7. Le Van Dai & Doan Duc Tung & Le Cao Quyen, 2017. "A Highly Relevant Method for Incorporation of Shunt Connected FACTS Device into Multi-Machine Power System to Dampen Electromechanical Oscillations," Energies, MDPI, vol. 10(4), pages 1-27, April.
    8. Davide Lauria & Fabio Mottola & Stefano Quaia, 2019. "Analytical Description of Overhead Transmission Lines Loadability," Energies, MDPI, vol. 12(16), pages 1-18, August.
    9. Papadimitrakis, M. & Giamarelos, N. & Stogiannos, M. & Zois, E.N. & Livanos, N.A.-I. & Alexandridis, A., 2021. "Metaheuristic search in smart grid: A review with emphasis on planning, scheduling and power flow optimization applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    10. Vennemo, Haakon & Rosnes, Orvika & Skulstad, Andreas, 2022. "The cost to households of a large electricity outage," Energy Economics, Elsevier, vol. 116(C).
    11. Manzoor Ellahi & Ghulam Abbas & Irfan Khan & Paul Mario Koola & Mashood Nasir & Ali Raza & Umar Farooq, 2019. "Recent Approaches of Forecasting and Optimal Economic Dispatch to Overcome Intermittency of Wind and Photovoltaic (PV) Systems: A Review," Energies, MDPI, vol. 12(22), pages 1-30, November.
    12. Wajahat Ullah Khan Tareen & Muhammad Aamir & Saad Mekhilef & Mutsuo Nakaoka & Mehdi Seyedmahmoudian & Ben Horan & Mudasir Ahmed Memon & Nauman Anwar Baig, 2018. "Mitigation of Power Quality Issues Due to High Penetration of Renewable Energy Sources in Electric Grid Systems Using Three-Phase APF/STATCOM Technologies: A Review," Energies, MDPI, vol. 11(6), pages 1-41, June.
    13. Yi Tang & Yuqian Liu & Jia Ning & Jingbo Zhao, 2017. "Multi-Time Scale Coordinated Scheduling Strategy with Distributed Power Flow Controllers for Minimizing Wind Power Spillage," Energies, MDPI, vol. 10(11), pages 1-15, November.
    14. Christina Kockel & Lars Nolting & Kevin Pacco & Carlo Schmitt & Albert Moser & Aaron Praktiknjo, 2022. "How Dependent Are European Power Systems and Economies on Natural Gas?—A Macroeconomic Optimization for Security of Electricity Supply," Energies, MDPI, vol. 15(23), pages 1-12, November.
    15. Biswas (Raha), Syamasree & Mandal, Kamal Krishna & Chakraborty, Niladri, 2016. "Pareto-efficient double auction power transactions for economic reactive power dispatch," Applied Energy, Elsevier, vol. 168(C), pages 610-627.
    16. Neda Hajibandeh & Miadreza Shafie-khah & Sobhan Badakhshan & Jamshid Aghaei & Sílvio J. P. S. Mariano & João P. S. Catalão, 2019. "Multi-Objective Market Clearing Model with an Autonomous Demand Response Scheme," Energies, MDPI, vol. 12(7), pages 1-16, April.
    17. Zhang, Haoran & Song, Xuan & Long, Yin & Xia, Tianqi & Fang, Kai & Zheng, Jianqin & Huang, Dou & Shibasaki, Ryosuke & Liang, Yongtu, 2019. "Mobile phone GPS data in urban bicycle-sharing: Layout optimization and emissions reduction analysis," Applied Energy, Elsevier, vol. 242(C), pages 138-147.
    18. Zhou, Yue & Wu, Jianzhong & Long, Chao, 2018. "Evaluation of peer-to-peer energy sharing mechanisms based on a multiagent simulation framework," Applied Energy, Elsevier, vol. 222(C), pages 993-1022.
    19. Jordehi, A. Rezaee, 2016. "Maximum power point tracking in photovoltaic (PV) systems: A review of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1127-1138.
    20. Mahdi, Fahad Parvez & Vasant, Pandian & Kallimani, Vish & Watada, Junzo & Fai, Patrick Yeoh Siew & Abdullah-Al-Wadud, M., 2018. "A holistic review on optimization strategies for combined economic emission dispatch problem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3006-3020.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1305-:d:110622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.