IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7099-d926691.html
   My bibliography  Save this article

Safety Evaluation and Energy Consumption Analysis of Deep Foundation Pit Excavation through Numerical Simulation and In-Site Monitoring

Author

Listed:
  • Ji Chen

    (School of Rail Transportation, Soochow University, Xiangcheng District, Suzhou 215131, China
    Graduate School of Global Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan)

  • Qi Xu

    (School of Rail Transportation, Soochow University, Xiangcheng District, Suzhou 215131, China)

  • Xinyu Luo

    (School of Rail Transportation, Soochow University, Xiangcheng District, Suzhou 215131, China)

  • Angran Tian

    (School of Rail Transportation, Soochow University, Xiangcheng District, Suzhou 215131, China)

  • Sujing Xu

    (Business School, Changshu Institute of Technology, Changshu, Suzhou 215500, China)

  • Qiang Tang

    (School of Rail Transportation, Soochow University, Xiangcheng District, Suzhou 215131, China
    Graduate School of Global Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan)

Abstract

Foundation pit excavation is common in urban construction, while safety evaluation is always significant in every specified project. The soil material properties, groundwater level, excavation method, supporting structure, monitoring points’ arrangement, and so on distinguish from one site from another. Thus, many studies have looked into the safety and reliability of designated projects. This paper was based on the co-construction underground tunnel project of a deep foundation pit excavation in Suzhou, China. This paper aimed to perform a safety evaluation on this foundation pit by means of numerical simulation for parameter influence analysis, as well as scientific comparison with in-site monitoring data. To minimize the energy consumption and contribute to the carbon neutrality, a brief energy consumption analysis was also conducted. The results indicated that the maximum deformation of the foundation pit bottom is 4.5 cm and the deformation of the foundation pit is within the allowable range. The maximum horizontal displacement of each excavation is approximately at 10 m to 12 m of the diaphragm wall and the largest deformation is 28 mm. The maximum ground settlement is less than 16 mm, which confirmed the safety during excavation. It is ideal that the above deformation law will provide a reference for similar projects. Furthermore, this research simulated and monitored the whole cycle of foundation pit excavation, and contributes to savings in energy consumption and limiting of carbon emissions.

Suggested Citation

  • Ji Chen & Qi Xu & Xinyu Luo & Angran Tian & Sujing Xu & Qiang Tang, 2022. "Safety Evaluation and Energy Consumption Analysis of Deep Foundation Pit Excavation through Numerical Simulation and In-Site Monitoring," Energies, MDPI, vol. 15(19), pages 1-14, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7099-:d:926691
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7099/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7099/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Olga Kanz & Angèle Reinders & Johanna May & Kaining Ding, 2020. "Environmental Impacts of Integrated Photovoltaic Modules in Light Utility Electric Vehicles," Energies, MDPI, vol. 13(19), pages 1-14, October.
    2. Nan Jiang & Yuqi Zhang & Chuanbo Zhou & Tingyao Wu & Bin Zhu, 2020. "Influence of Blasting Vibration of MLEMC Shaft Foundation Pit on Adjacent High-Rise Frame Structure: A Case Study," Energies, MDPI, vol. 13(19), pages 1-21, October.
    3. Wenxiao Chu & Francesco Calise & Neven Duić & Poul Alberg Østergaard & Maria Vicidomini & Qiuwang Wang, 2020. "Recent Advances in Technology, Strategy and Application of Sustainable Energy Systems," Energies, MDPI, vol. 13(19), pages 1-29, October.
    4. Gabriele Fambri & Marco Badami & Dimosthenis Tsagkrasoulis & Vasiliki Katsiki & Georgios Giannakis & Antonis Papanikolaou, 2020. "Demand Flexibility Enabled by Virtual Energy Storage to Improve Renewable Energy Penetration," Energies, MDPI, vol. 13(19), pages 1-20, October.
    5. Pim van der Male & Marco Vergassola & Karel N. van Dalen, 2020. "Decoupled Modelling Approaches for Environmental Interactions with Monopile-Based Offshore Wind Support Structures," Energies, MDPI, vol. 13(19), pages 1-35, October.
    6. Shu-chen Li & Can Xie & Yan-hong Liang & Qin Yan, 2018. "Seepage Flow Model and Deformation Properties of Coastal Deep Foundation Pit under Tidal Influence," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-10, April.
    7. Kai Cui & Jun Feng & Chengyong Zhu, 2018. "A Study on the Mechanisms of Interaction between Deep Foundation Pits and the Pile Foundations of Adjacent Skewed Arches as well as Methods for Deformation Control," Complexity, Hindawi, vol. 2018, pages 1-19, April.
    8. Yu Hu & Jian Yang & Charalampos Baniotopoulos, 2020. "Study of the Bearing Capacity of Stiffened Tall Offshore Wind Turbine Towers during the Erection Phase," Energies, MDPI, vol. 13(19), pages 1-19, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huajun Xue, 2023. "Research on the Control of Excavation Deformation of Super Deep Foundation Pit Adjacent to the Existing Old Masonry Structure Building," Sustainability, MDPI, vol. 15(9), pages 1-14, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mattia Rapa & Laura Gobbi & Roberto Ruggieri, 2020. "Environmental and Economic Sustainability of Electric Vehicles: Life Cycle Assessment and Life Cycle Costing Evaluation of Electricity Sources," Energies, MDPI, vol. 13(23), pages 1-16, November.
    2. Yu, Zhen & Wang, Yilan & Ma, Xiaoqian & Shuai, Chuanmin & Zhao, Yujia, 2023. "How critical mineral supply security affects China NEVs industry? Based on a prediction for chromium and cobalt in 2030," Resources Policy, Elsevier, vol. 85(PB).
    3. Zhang, Shixu & Li, Yaowang & Du, Ershun & Fan, Chuan & Wu, Zhenlong & Yao, Yong & Liu, Lurao & Zhang, Ning, 2023. "A review and outlook on cloud energy storage: An aggregated and shared utilizing method of energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    4. Fahad Alismail & Mohamed A. Abdulgalil & Muhammad Khalid, 2021. "Optimal Coordinated Planning of Energy Storage and Tie-Lines to Boost Flexibility with High Wind Power Integration," Sustainability, MDPI, vol. 13(5), pages 1-17, February.
    5. Jan Michna & Krzysztof Rogowski & Galih Bangga & Martin O. L. Hansen, 2021. "Accuracy of the Gamma Re-Theta Transition Model for Simulating the DU-91-W2-250 Airfoil at High Reynolds Numbers," Energies, MDPI, vol. 14(24), pages 1-29, December.
    6. Thiel, Christian & Gracia Amillo, Ana & Tansini, Alessandro & Tsakalidis, Anastasios & Fontaras, Georgios & Dunlop, Ewan & Taylor, Nigel & Jäger-Waldau, Arnulf & Araki, Kenji & Nishioka, Kensuke & Ota, 2022. "Impact of climatic conditions on prospects for integrated photovoltaics in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    7. Toshiyuki Sueyoshi & Youngbok Ryu & Ji-Young Yun, 2021. "COVID-19 Response and Prospects of Clean/Sustainable Energy Transition in Industrial Nations: New Environmental Assessment," Energies, MDPI, vol. 14(4), pages 1-30, February.
    8. Nina Liu & Quanzhong Lu & Xiaoyang Feng & Wen Fan & Jianbing Peng & Weiliang Liu & Xin Kang, 2019. "Dynamic Characteristics of Metro Tunnel Closely Parallel to a Ground Fissure," Complexity, Hindawi, vol. 2019, pages 1-11, April.
    9. Wenxiao Chu & Maria Vicidomini & Francesco Calise & Neven Duić & Poul Alborg Østergaard & Qiuwang Wang & Maria da Graça Carvalho, 2022. "Recent Advances in Technologies, Methods, and Economic Analysis for Sustainable Development of Energy, Water, and Environment Systems," Energies, MDPI, vol. 15(19), pages 1-24, September.
    10. Lukas Kerpen & Achim Schmidt & Bernd Sankol, 2021. "Differentiating the Physical Optimum from the Exergetic Evaluation of a Methane Combustion Process," Energies, MDPI, vol. 14(12), pages 1-17, June.
    11. Luigi Fortuna & Arturo Buscarino, 2022. "Sustainable Energy Systems," Energies, MDPI, vol. 15(23), pages 1-7, December.
    12. Nenming Wang & Guwen Tang, 2022. "A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(6), pages 1-35, March.
    13. Fambri, Gabriele & Diaz-Londono, Cesar & Mazza, Andrea & Badami, Marco & Sihvonen, Teemu & Weiss, Robert, 2022. "Techno-economic analysis of Power-to-Gas plants in a gas and electricity distribution network system with high renewable energy penetration," Applied Energy, Elsevier, vol. 312(C).
    14. Kenji Araki & Yasuyuki Ota & Akira Nagaoka & Kensuke Nishioka, 2023. "3D Solar Irradiance Model for Non-Uniform Shading Environments Using Shading (Aperture) Matrix Enhanced by Local Coordinate System," Energies, MDPI, vol. 16(11), pages 1-20, May.
    15. Christian Pfeiffer & Markus Puchegger & Claudia Maier & Ina V. Tomaschitz & Thomas P. Kremsner & Lukas Gnam, 2020. "A Case Study of Socially-Accepted Potentials for the Use of End User Flexibility by Home Energy Management Systems," Sustainability, MDPI, vol. 13(1), pages 1-19, December.
    16. Kenji Araki & Yasuyuki Ota & Anju Maeda & Minoru Kumano & Kensuke Nishioka, 2023. "Solar Electric Vehicles as Energy Sources in Disaster Zones: Physical and Social Factors," Energies, MDPI, vol. 16(8), pages 1-25, April.
    17. Qingchang Chen & Zhuoyang Sun & Wenjing Li, 2023. "Effects of COVID-19 on Residential Planning and Design: A Scientometric Analysis," Sustainability, MDPI, vol. 15(3), pages 1-20, February.
    18. Charis J. Gantes & Maria Villi Billi & Mahmut Güldogan & Semih Gül, 2021. "A Novel Tripod Concept for Onshore Wind Turbine Towers," Energies, MDPI, vol. 14(18), pages 1-25, September.
    19. Rafał Nagaj & Brigita Žuromskaitė, 2021. "Tourism in the Era of Covid-19 and Its Impact on the Environment," Energies, MDPI, vol. 14(7), pages 1-18, April.
    20. María Herrando & Antonio Gómez & Norberto Fueyo, 2022. "Supporting Local Authorities to Plan Energy Efficiency in Public Buildings: From Local Needs to Regional Planning," Energies, MDPI, vol. 15(3), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7099-:d:926691. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.