IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4799-d413423.html
   My bibliography  Save this article

Willow Cultivation as Feedstock for Bioenergy-External Production Cost

Author

Listed:
  • Ewelina Olba-Zięty

    (Centre for Bioeconomy and Renewable Energies, Department of Plant Breeding and Seed Production, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, 10-724 Olsztyn, Poland)

  • Mariusz Jerzy Stolarski

    (Centre for Bioeconomy and Renewable Energies, Department of Plant Breeding and Seed Production, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, 10-724 Olsztyn, Poland)

  • Michał Krzyżaniak

    (Centre for Bioeconomy and Renewable Energies, Department of Plant Breeding and Seed Production, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, 10-724 Olsztyn, Poland)

  • Kazimierz Warmiński

    (Centre for Bioeconomy and Renewable Energies, Department of Chemistry, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland)

Abstract

Biomass remains one of the most important materials for the production of renewable energy in the European Union. Willow can be one of the sources of biomass, and its production can also be profitable on soils with low quality. A proper selection of raw material for energy production should be based not only on the cost effectiveness or crop yield, but also on the environmental impact and the cost it incurs. The aim of this work was to evaluate the external environmental costs of the production of willow chips of seven willow genotypes, produced for energy generation on marginal cropping lands. The environmental external costs of chips production were estimated against the amount of emissions calculated according to the LCA method (ReCiPe Midpoint) and its monetary value. The external environmental cost of willow chips production amounted to €212 ha −1 year −1 , which constituted 23% of the total production cost of willow chips. The external cost of production of 1 Mg d.m. of willow chips for the best yielding variety averaged €21.5, which corresponded to 27% of the total production cost. The research demonstrated that a proper selection of an optimal variety may lead to the reduction of the external cost.

Suggested Citation

  • Ewelina Olba-Zięty & Mariusz Jerzy Stolarski & Michał Krzyżaniak & Kazimierz Warmiński, 2020. "Willow Cultivation as Feedstock for Bioenergy-External Production Cost," Energies, MDPI, vol. 13(18), pages 1-17, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4799-:d:413423
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4799/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4799/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Owen, Anthony D., 2006. "Renewable energy: Externality costs as market barriers," Energy Policy, Elsevier, vol. 34(5), pages 632-642, March.
    2. Dias, Goretty M. & Ayer, Nathan W. & Kariyapperuma, Kumudinie & Thevathasan, Naresh & Gordon, Andrew & Sidders, Derek & Johannesson, Gudmundur H., 2017. "Life cycle assessment of thermal energy production from short-rotation willow biomass in Southern Ontario, Canada," Applied Energy, Elsevier, vol. 204(C), pages 343-352.
    3. Rentizelas, Athanasios & Georgakellos, Dimitrios, 2014. "Incorporating life cycle external cost in optimization of the electricity generation mix," Energy Policy, Elsevier, vol. 65(C), pages 134-149.
    4. Vanbeveren, Stefan P.P. & Ceulemans, Reinhart, 2019. "Biodiversity in short-rotation coppice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 34-43.
    5. González-García, Sara & Iribarren, Diego & Susmozas, Ana & Dufour, Javier & Murphy, Richard J., 2012. "Life cycle assessment of two alternative bioenergy systems involving Salix spp. biomass: Bioethanol production and power generation," Applied Energy, Elsevier, vol. 95(C), pages 111-122.
    6. Jongeneel, Roel & Polman, Nico & van der Ham, Corinda, 2014. "Costs and benefits associated with the externalities generated by Dutch agriculture," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182705, European Association of Agricultural Economists.
    7. Weidema, Bo Pedersen, 2009. "Using the budget constraint to monetarise impact assessment results," Ecological Economics, Elsevier, vol. 68(6), pages 1591-1598, April.
    8. Hauk, Sebastian & Knoke, Thomas & Wittkopf, Stefan, 2014. "Economic evaluation of short rotation coppice systems for energy from biomass—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 435-448.
    9. Rodolfo Picchio & Francesco Latterini & Rachele Venanzi & Walter Stefanoni & Alessandro Suardi & Damiano Tocci & Luigi Pari, 2020. "Pellet Production from Woody and Non-Woody Feedstocks: A Review on Biomass Quality Evaluation," Energies, MDPI, vol. 13(11), pages 1-20, June.
    10. Kusiima, Jamil M. & Powers, Susan E., 2010. "Monetary value of the environmental and health externalities associated with production of ethanol from biomass feedstocks," Energy Policy, Elsevier, vol. 38(6), pages 2785-2796, June.
    11. Mariusz Jerzy Stolarski & Stefan Szczukowski & Michał Krzyżaniak & Józef Tworkowski, 2020. "Energy Value of Yield and Biomass Quality in a 7-Year Rotation of Willow Cultivated on Marginal Soil," Energies, MDPI, vol. 13(9), pages 1-12, April.
    12. Tharakan, Pradeep J. & Volk, Timothy A. & Lindsey, Christopher A. & Abrahamson, Lawrence P. & White, Edwin H., 2005. "Evaluating the impact of three incentive programs on the economics of cofiring willow biomass with coal in New York State," Energy Policy, Elsevier, vol. 33(3), pages 337-347, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stolarski, Mariusz J. & Stachowicz, Paweł & Dudziec, Paweł, 2022. "Wood pellet quality depending on dendromass species," Renewable Energy, Elsevier, vol. 199(C), pages 498-508.
    2. Ewelina Olba-Zięty & Mariusz Jerzy Stolarski & Michał Krzyżaniak, 2021. "Economic Evaluation of the Production of Perennial Crops for Energy Purposes—A Review," Energies, MDPI, vol. 14(21), pages 1-16, November.
    3. Jakub Jan Zięty & Ewelina Olba-Zięty & Mariusz Jerzy Stolarski & Michał Krzykowski & Michał Krzyżaniak, 2022. "Legal Framework for the Sustainable Production of Short Rotation Coppice Biomass for Bioeconomy and Bioenergy," Energies, MDPI, vol. 15(4), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen, Thu Lan Thi & Laratte, Bertrand & Guillaume, Bertrand & Hua, Anthony, 2016. "Quantifying environmental externalities with a view to internalizing them in the price of products, using different monetization models," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 13-23.
    2. Livingstone, David & Smyth, Beatrice M. & Lyons, Gary & Foley, Aoife M. & Murray, Simon T. & Johnston, Chris, 2022. "Life cycle assessment of a short-rotation coppice willow riparian buffer strip for farm nutrient mitigation and renewable energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    3. Rössert, Sebastian & Gosling, Elizabeth & Gandorfer, Markus & Knoke, Thomas, 2022. "Woodchips or potato chips? How enhancing soil carbon and reducing chemical inputs influence the allocation of cropland," Agricultural Systems, Elsevier, vol. 198(C).
    4. Stolarski, Mariusz J. & Stachowicz, Paweł & Dudziec, Paweł, 2022. "Wood pellet quality depending on dendromass species," Renewable Energy, Elsevier, vol. 199(C), pages 498-508.
    5. Martinez-Valencia, Lina & Garcia-Perez, Manuel & Wolcott, Michael P., 2021. "Supply chain configuration of sustainable aviation fuel: Review, challenges, and pathways for including environmental and social benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    6. Anni Orola & Anna Härri & Jarkko Levänen & Ville Uusitalo & Stig Irving Olsen, 2022. "Assessing WELBY Social Life Cycle Assessment Approach through Cobalt Mining Case Study," Sustainability, MDPI, vol. 14(18), pages 1-26, September.
    7. Islam, Aminul & Chan, Eng-Seng & Taufiq-Yap, Yun Hin & Mondal, Md. Alam Hossain & Moniruzzaman, M. & Mridha, Moniruzzaman, 2014. "Energy security in Bangladesh perspective—An assessment and implication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 154-171.
    8. Iribarren, Diego & Martín-Gamboa, Mario & Navas-Anguita, Zaira & García-Gusano, Diego & Dufour, Javier, 2020. "Influence of climate change externalities on the sustainability-oriented prioritisation of prospective energy scenarios," Energy, Elsevier, vol. 196(C).
    9. Ortega, Margarita & del Río, Pablo & Montero, Eduardo A., 2013. "Assessing the benefits and costs of renewable electricity. The Spanish case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 294-304.
    10. Yu, Shiwei & Wei, Yi-Ming & Guo, Haixiang & Ding, Liping, 2014. "Carbon emission coefficient measurement of the coal-to-power energy chain in China," Applied Energy, Elsevier, vol. 114(C), pages 290-300.
    11. Xiaonan Wang & Licheng Wang & Jianping Chen & Shouting Zhang & Paolo Tarolli, 2020. "Assessment of the External Costs of Life Cycle of Coal: The Case Study of Southwestern China," Energies, MDPI, vol. 13(15), pages 1-26, August.
    12. Navas-Anguita, Zaira & García-Gusano, Diego & Iribarren, Diego, 2019. "A review of techno-economic data for road transportation fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 11-26.
    13. Zang, Guiyan & Zhang, Jianan & Jia, Junxi & Lora, Electo Silva & Ratner, Albert, 2020. "Life cycle assessment of power-generation systems based on biomass integrated gasification combined cycles," Renewable Energy, Elsevier, vol. 149(C), pages 336-346.
    14. Murshed, Muntasir, 2019. "Trade Liberalization Policies and Renewable Energy Transition in Low and Middle-Income Countries? An Instrumental Variable Approach," MPRA Paper 97075, University Library of Munich, Germany.
    15. Tahereh Soleymani Angili & Katarzyna Grzesik & Anne Rödl & Martin Kaltschmitt, 2021. "Life Cycle Assessment of Bioethanol Production: A Review of Feedstock, Technology and Methodology," Energies, MDPI, vol. 14(10), pages 1-18, May.
    16. Nir Becker & David Soloveitchik & Moshe Olshansky, 2012. "A Weighted Average Incorporation of Pollution Costs into the Electrical Expansion Planning," Energy & Environment, , vol. 23(1), pages 1-15, January.
    17. Shahriyar Nasirov & Carlos Silva & Claudio A. Agostini, 2015. "Investors’ Perspectives on Barriers to the Deployment of Renewable Energy Sources in Chile," Energies, MDPI, vol. 8(5), pages 1-21, April.
    18. Shew, Aaron M. & Nalley, Lawton L. & Durand-Morat, Alvaro & Meredith, Kylie & Parajuli, Ranjan & Thoma, Greg & Henry, Christopher G., 2021. "Holistically valuing public investments in agricultural water conservation," Agricultural Water Management, Elsevier, vol. 252(C).
    19. Kotzebue, Julia R. & Bressers, Hans Th.A. & Yousif, Charles, 2010. "Spatial misfits in a multi-level renewable energy policy implementation process on the Small Island State of Malta," Energy Policy, Elsevier, vol. 38(10), pages 5967-5976, October.
    20. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit & Kuşkaya, Sevda, 2017. "Can biomass energy be an efficient policy tool for sustainable development?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 830-845.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4799-:d:413423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.