IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i8p1565-d225766.html
   My bibliography  Save this article

Economic and Technological Analysis of Commercial LNG Production in the EU

Author

Listed:
  • Vladimír Hönig

    (Department of Chemistry, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6, Czech Republic
    Department of Strategy, Faculty of Business Administration, University of Economics, Prague, W. Churchill Sq. 1938/4, 130 67 Prague 3, Czech Republic)

  • Petr Prochazka

    (Department of Economics, Faculty of Economics and Management, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6, Czech Republic)

  • Michal Obergruber

    (Department of Chemistry, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6, Czech Republic)

  • Luboš Smutka

    (Department of Trade and Finance, Faculty of Economics and Management, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6, Czech Republic)

  • Viera Kučerová

    (Department of Chemistry and Chemical Technology, Faculty of Wood Sciences and Technology, Technical University in Zvolen, 960 53 Zvolen, Slovakia)

Abstract

There is a global need to increase the production of alternative sources of energy due to many issues related to conventional sources, such as environmental degradation or energy security. In this paper, decentralized liquefied natural gas production is analyzed. Liquefied natural gas, according to the analysis, can be considered a viable alternative even for decentralized applications Design and economic analysis of a small-scale biogas LNG plan together with the necessary technology and economic evaluation are presented in the paper. The results show that a project of the proposed size (EUR 3 million) offers a relatively good profitability level. Specifically, the net present value of the project is mostly positive (around EUR 0.1 million up to EUR 0.8 million). Therefore, based on the research, small LNG plants operating across the continent can be recommended for the processing of local sources of biogas.

Suggested Citation

  • Vladimír Hönig & Petr Prochazka & Michal Obergruber & Luboš Smutka & Viera Kučerová, 2019. "Economic and Technological Analysis of Commercial LNG Production in the EU," Energies, MDPI, vol. 12(8), pages 1-17, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1565-:d:225766
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/8/1565/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/8/1565/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kruyt, Bert & Lehning, Michael & Kahl, Annelen, 2017. "Potential contributions of wind power to a stable and highly renewable Swiss power supply," Applied Energy, Elsevier, vol. 192(C), pages 1-11.
    2. Wang, Yuanyuan & Wang, Jianzhou & Zhao, Ge & Dong, Yao, 2012. "Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: A case study of China," Energy Policy, Elsevier, vol. 48(C), pages 284-294.
    3. Zhu, Bangzhu & Wei, Yiming, 2013. "Carbon price forecasting with a novel hybrid ARIMA and least squares support vector machines methodology," Omega, Elsevier, vol. 41(3), pages 517-524.
    4. Lin, Wensheng & Zhang, Na & Gu, Anzhong, 2010. "LNG (liquefied natural gas): A necessary part in China's future energy infrastructure," Energy, Elsevier, vol. 35(11), pages 4383-4391.
    5. Chalvatzis, Konstantinos J. & Ioannidis, Alexis, 2017. "Energy supply security in the EU: Benchmarking diversity and dependence of primary energy," Applied Energy, Elsevier, vol. 207(C), pages 465-476.
    6. Kanbur, Baris Burak & Xiang, Liming & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2018. "Finite sum based thermoeconomic and sustainable analyses of the small scale LNG cold utilized power generation systems," Applied Energy, Elsevier, vol. 220(C), pages 944-961.
    7. Lam, Pun-Lee, 2000. "The growth of Japan's LNG industry: Lessons for China and Hong Kong," Energy Policy, Elsevier, vol. 28(5), pages 327-333, May.
    8. Pfoser, Sarah & Schauer, Oliver & Costa, Yasel, 2018. "Acceptance of LNG as an alternative fuel: Determinants and policy implications," Energy Policy, Elsevier, vol. 120(C), pages 259-267.
    9. Bittante, A. & Pettersson, F. & Saxén, H., 2018. "Optimization of a small-scale LNG supply chain," Energy, Elsevier, vol. 148(C), pages 79-89.
    10. Arteconi, A. & Polonara, F., 2013. "LNG as vehicle fuel and the problem of supply: The Italian case study," Energy Policy, Elsevier, vol. 62(C), pages 503-512.
    11. Madžarević, Aleksandar & Ivezić, Dejan & Živković, Marija & Tanasijević, Miloš & Ivić, Milica, 2018. "Assessment of vulnerability of natural gas supply in Serbia: State and perspective," Energy Policy, Elsevier, vol. 121(C), pages 415-425.
    12. Severino Romano & Mario Cozzi & Francesco Di Napoli & Mauro Viccaro, 2013. "Building Agro-Energy Supply Chains in the Basilicata Region: Technical and Economic Evaluation of Interchangeability between Fossil and Renewable Energy Sources," Energies, MDPI, vol. 6(10), pages 1-24, October.
    13. Kriechbaumer, Thomas & Angus, Andrew & Parsons, David & Rivas Casado, Monica, 2014. "An improved wavelet–ARIMA approach for forecasting metal prices," Resources Policy, Elsevier, vol. 39(C), pages 32-41.
    14. Arteconi, A. & Brandoni, C. & Evangelista, D. & Polonara, F., 2010. "Life-cycle greenhouse gas analysis of LNG as a heavy vehicle fuel in Europe," Applied Energy, Elsevier, vol. 87(6), pages 2005-2013, June.
    15. Mortazavi, A. & Somers, C. & Hwang, Y. & Radermacher, R. & Rodgers, P. & Al-Hashimi, S., 2012. "Performance enhancement of propane pre-cooled mixed refrigerant LNG plant," Applied Energy, Elsevier, vol. 93(C), pages 125-131.
    16. He, Tianbiao & Liu, Zuming & Ju, Yonglin & Parvez, Ashak Mahmud, 2019. "A comprehensive optimization and comparison of modified single mixed refrigerant and parallel nitrogen expansion liquefaction process for small-scale mobile LNG plant," Energy, Elsevier, vol. 167(C), pages 1-12.
    17. Herbes, Carsten & Halbherr, Verena & Braun, Lorenz, 2018. "Factors influencing prices for heat from biogas plants," Applied Energy, Elsevier, vol. 221(C), pages 308-318.
    18. van Goor, Harm & Scholtens, Bert, 2014. "Modeling natural gas price volatility: The case of the UK gas market," Energy, Elsevier, vol. 72(C), pages 126-134.
    19. Federica Cucchiella & Idiano D’Adamo & Paolo Rosa, 2015. "Industrial Photovoltaic Systems: An Economic Analysis in Non-Subsidized Electricity Markets," Energies, MDPI, vol. 8(11), pages 1-16, November.
    20. Ruble, Isabella, 2017. "European Union energy supply security: The benefits of natural gas imports from the Eastern Mediterranean," Energy Policy, Elsevier, vol. 105(C), pages 341-353.
    21. Schulte, Simon & Weiser, Florian, 2019. "LNG import quotas in Lithuania – Economic effects of breaking Gazprom's natural gas monopoly," Energy Economics, Elsevier, vol. 78(C), pages 174-181.
    22. Emiliano, Paulo C. & Vivanco, Mário J.F. & de Menezes, Fortunato S., 2014. "Information criteria: How do they behave in different models?," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 141-153.
    23. Baccioli, A. & Antonelli, M. & Frigo, S. & Desideri, U. & Pasini, G., 2018. "Small scale bio-LNG plant: Comparison of different biogas upgrading techniques," Applied Energy, Elsevier, vol. 217(C), pages 328-335.
    24. Khan, Muhammad Imran & Yasmin, Tabassum & Shakoor, Abdul, 2015. "Technical overview of compressed natural gas (CNG) as a transportation fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 785-797.
    25. Ancona, M.A. & Bianchi, M. & Branchini, L. & De Pascale, A. & Melino, F. & Mormile, M. & Palella, M. & Scarponi, L.B., 2018. "Investigation on small-scale low pressure LNG production process," Applied Energy, Elsevier, vol. 227(C), pages 672-685.
    26. Knaut, Andreas & Tode, Christian & Lindenberger, Dietmar & Malischek, Raimund & Paulus, Simon & Wagner, Johannes, 2016. "The reference forecast of the German energy transition—An outlook on electricity markets," Energy Policy, Elsevier, vol. 92(C), pages 477-491.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Petr Procházka & Luboš Smutka & Vladimír Hönig, 2019. "Using Biofuels for Highly Renewable Electricity Systems: A Case Study of the Jatropha curcas," Energies, MDPI, vol. 12(15), pages 1-17, August.
    2. Santiago M. López & Mar Cebrián, 2021. "The Development of Wind Farm Businesses and the Central Control of the Smart Grid in Spain: Making a Virtue of Necessity," Energies, MDPI, vol. 14(20), pages 1-19, October.
    3. Noor Yusuf & Tareq Al-Ansari, 2023. "Current and Future Role of Natural Gas Supply Chains in the Transition to a Low-Carbon Hydrogen Economy: A Comprehensive Review on Integrated Natural Gas Supply Chain Optimisation Models," Energies, MDPI, vol. 16(22), pages 1-33, November.
    4. Muhammad Abdul Qyyum & Muhammad Yasin & Alam Nawaz & Tianbiao He & Wahid Ali & Junaid Haider & Kinza Qadeer & Abdul-Sattar Nizami & Konstantinos Moustakas & Moonyong Lee, 2020. "Single-Solution-Based Vortex Search Strategy for Optimal Design of Offshore and Onshore Natural Gas Liquefaction Processes," Energies, MDPI, vol. 13(7), pages 1-22, April.
    5. Alexey Cherepovitsyn & Olga Evseeva, 2020. "Parameters of Sustainable Development: Case of Arctic Liquefied Natural Gas Projects," Resources, MDPI, vol. 10(1), pages 1-27, December.
    6. Agnieszka Magdalena Kalbarczyk-Jedynak & Magdalena Ślączka-Wilk & Magdalena Kaup & Wojciech Ślączka & Dorota Łozowicka, 2022. "Assessment of Explosion Safety Status within the Area of an LNG Terminal in a Function of Selected Parameters," Energies, MDPI, vol. 15(11), pages 1-34, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Shouheng & Ertz, Myriam, 2022. "Life cycle assessment and risk assessment of liquefied natural gas vehicles promotion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    2. Girma T. Chala & Abd Rashid Abd Aziz & Ftwi Y. Hagos, 2018. "Natural Gas Engine Technologies: Challenges and Energy Sustainability Issue," Energies, MDPI, vol. 11(11), pages 1-44, October.
    3. Yang, Liangcheng & Ge, Xumeng & Wan, Caixia & Yu, Fei & Li, Yebo, 2014. "Progress and perspectives in converting biogas to transportation fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1133-1152.
    4. Konstantina Peloriadi & Petros Iliadis & Panagiotis Boutikos & Konstantinos Atsonios & Panagiotis Grammelis & Aristeidis Nikolopoulos, 2022. "Technoeconomic Assessment of LNG-Fueled Solid Oxide Fuel Cells in Small Island Systems: The Patmos Island Case Study," Energies, MDPI, vol. 15(11), pages 1-20, May.
    5. Díaz, Guzmán & Planas, Estefanía & Andreu, Jon & Kortabarria, Iñigo, 2015. "Joint cost of energy under an optimal economic policy of hybrid power systems subject to uncertainty," Energy, Elsevier, vol. 88(C), pages 837-848.
    6. Song, Hongqing & Ou, Xunmin & Yuan, Jiehui & Yu, Mingxu & Wang, Cheng, 2017. "Energy consumption and greenhouse gas emissions of diesel/LNG heavy-duty vehicle fleets in China based on a bottom-up model analysis," Energy, Elsevier, vol. 140(P1), pages 966-978.
    7. Xiong, Xiaojun & Lin, Wensheng & Gu, Anzhong, 2015. "Integration of CO2 cryogenic removal with a natural gas pressurized liquefaction process using gas expansion refrigeration," Energy, Elsevier, vol. 93(P1), pages 1-9.
    8. Seo, Suwon & Han, Sangheon & Lee, Sangick & Chang, Daejun, 2016. "A pump-free boosting system and its application to liquefied natural gas supply for large ships," Energy, Elsevier, vol. 105(C), pages 70-79.
    9. Gong, Chengzhu & Gong, Nianjiao & Qi, Rui & Yu, Shiwei, 2020. "Assessment of natural gas supply security in Asia Pacific: Composite indicators with compromise Benefit-of-the-Doubt weights," Resources Policy, Elsevier, vol. 67(C).
    10. Wang, Xucen & Li, Min & Cai, Liuxi & Li, Yun, 2020. "Propane and iso-butane pre-cooled mixed refrigerant liquefaction process for small-scale skid-mounted natural gas liquefaction," Applied Energy, Elsevier, vol. 275(C).
    11. Chen, Zheng & Zhang, Fan & Xu, Boya & Zhang, Quanchang & Liu, Jingping, 2017. "Influence of methane content on a LNG heavy-duty engine with high compression ratio," Energy, Elsevier, vol. 128(C), pages 329-336.
    12. Ivan Smajla & Daria Karasalihović Sedlar & Branko Drljača & Lucija Jukić, 2019. "Fuel Switch to LNG in Heavy Truck Traffic," Energies, MDPI, vol. 12(3), pages 1-19, February.
    13. Alejandro Ortega & Konstantinos Gkoumas & Anastasios Tsakalidis & Ferenc Pekár, 2021. "Low-Emission Alternative Energy for Transport in the EU: State of Play of Research and Innovation," Energies, MDPI, vol. 14(22), pages 1-22, November.
    14. He, Tianbiao & Zhang, Jibao & Mao, Ning & Linga, Praveen, 2021. "Organic Rankine cycle integrated with hydrate-based desalination for a sustainable energy–water nexus system," Applied Energy, Elsevier, vol. 291(C).
    15. He, Tianbiao & Ju, Yonglin, 2014. "A novel conceptual design of parallel nitrogen expansion liquefaction process for small-scale LNG (liquefied natural gas) plant in skid-mount packages," Energy, Elsevier, vol. 75(C), pages 349-359.
    16. Osorio-Tejada, Jose Luis & Llera-Sastresa, Eva & Scarpellini, Sabina, 2017. "Liquefied natural gas: Could it be a reliable option for road freight transport in the EU?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 785-795.
    17. Martin Jurkovič & Tomáš Kalina & Ondrej Stopka & Piotr Gorzelanczyk & Borna Abramović, 2021. "Economic Calculation and Operations Research in Terms of LNG Carriage by Water Transport: A Case Study of the Port of Bratislava," Sustainability, MDPI, vol. 13(6), pages 1-25, March.
    18. Wang, Delu & Wang, Yadong & Song, Xuefeng & Liu, Yun, 2018. "Coal overcapacity in China: Multiscale analysis and prediction," Energy Economics, Elsevier, vol. 70(C), pages 244-257.
    19. Pfoser, Sarah & Schauer, Oliver & Costa, Yasel, 2018. "Acceptance of LNG as an alternative fuel: Determinants and policy implications," Energy Policy, Elsevier, vol. 120(C), pages 259-267.
    20. Md Arman Arefin & Md Nurun Nabi & Md Washim Akram & Mohammad Towhidul Islam & Md Wahid Chowdhury, 2020. "A Review on Liquefied Natural Gas as Fuels for Dual Fuel Engines: Opportunities, Challenges and Responses," Energies, MDPI, vol. 13(22), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1565-:d:225766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.