IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i21p4091-d280623.html
   My bibliography  Save this article

A Novel Integrated Topology to Interface Electric Vehicles and Renewable Energies with the Grid

Author

Listed:
  • Alfredo Alvarez-Diazcomas

    (Electronics Engineering Department, Instituto Tecnológico de Celaya, 38010 Celaya, Mexico
    These authors contributed equally to this work.)

  • Héctor López

    (Electronics Engineering Department, Instituto Tecnológico de Celaya, 38010 Celaya, Mexico
    These authors contributed equally to this work.)

  • Roberto V. Carrillo-Serrano

    (Facultad de Ingeniería, Universidad Autónoma de Querétaro, 76010 Queretaro, Mexico
    These authors contributed equally to this work.)

  • Juvenal Rodríguez-Reséndiz

    (Facultad de Ingeniería, Universidad Autónoma de Querétaro, 76010 Queretaro, Mexico
    These authors contributed equally to this work.)

  • Nimrod Vázquez

    (Electronics Engineering Department, Instituto Tecnológico de Celaya, 38010 Celaya, Mexico
    These authors contributed equally to this work.)

  • Gilberto Herrera-Ruiz

    (Facultad de Ingeniería, Universidad Autónoma de Querétaro, 76010 Queretaro, Mexico
    These authors contributed equally to this work.)

Abstract

Electric Vehicles (EVs) are an alternative to internal combustion engine cars to reduce the environmental impact of transportation. It is common to use several power sources to achieve the requirements of the electric motor. A proper power converter and an accurate control strategy need to be utilized to take advantage of the characteristics of every source. In this paper is presented a novel topology of a multiple-input bidirectional DC-DC power converter to interface two or more sources of energy with different voltage levels. Furthermore, it can be used as a buck or a boost in any of the possible conversion of energy. It is also possible to independently control the extracted power in each source and any combination of the elements of the system can be used as source and destiny for a transfer. Finally, the interaction with the grid is possible. The operation, analysis and design of the converter are presented with different modes of power transfer. Simulation results are shown where the theoretical analysis of the converter is validated.

Suggested Citation

  • Alfredo Alvarez-Diazcomas & Héctor López & Roberto V. Carrillo-Serrano & Juvenal Rodríguez-Reséndiz & Nimrod Vázquez & Gilberto Herrera-Ruiz, 2019. "A Novel Integrated Topology to Interface Electric Vehicles and Renewable Energies with the Grid," Energies, MDPI, vol. 12(21), pages 1-21, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4091-:d:280623
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/21/4091/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/21/4091/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Solaymani, Saeed, 2019. "CO2 emissions patterns in 7 top carbon emitter economies: The case of transport sector," Energy, Elsevier, vol. 168(C), pages 989-1001.
    2. G. V. Brahmendra Kumar & Ratnam Kamala Sarojini & K. Palanisamy & Sanjeevikumar Padmanaban & Jens Bo Holm-Nielsen, 2019. "Large Scale Renewable Energy Integration: Issues and Solutions," Energies, MDPI, vol. 12(10), pages 1-17, May.
    3. Yun Yang & Siew Chong Tan, 2019. "Trends and Development of Sliding Mode Control Applications for Renewable Energy Systems," Energies, MDPI, vol. 12(15), pages 1-17, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alfredo Alvarez-Diazcomas & Adyr A. Estévez-Bén & Juvenal Rodríguez-Reséndiz & Miguel-Angel Martínez-Prado & Roberto V. Carrillo-Serrano & Suresh Thenozhi, 2020. "A Review of Battery Equalizer Circuits for Electric Vehicle Applications," Energies, MDPI, vol. 13(21), pages 1-29, October.
    2. Ariel Villalón & Carlos Muñoz & Javier Muñoz & Marco Rivera, 2023. "Fixed-Switching-Frequency Modulated Model Predictive Control for Islanded AC Microgrid Applications," Mathematics, MDPI, vol. 11(3), pages 1-27, January.
    3. Alfredo Alvarez-Diazcomas & Adyr A. Estévez-Bén & Juvenal Rodríguez-Reséndiz & Miguel-Angel Martínez-Prado & Jorge D. Mendiola-Santíbañez, 2020. "A Novel RC-Based Architecture for Cell Equalization in Electric Vehicles," Energies, MDPI, vol. 13(9), pages 1-16, May.
    4. Wiktor Olchowik & Jędrzej Gajek & Andrzej Michalski, 2023. "The Use of Evolutionary Algorithms in the Modelling of Diffuse Radiation in Terms of Simulating the Energy Efficiency of Photovoltaic Systems," Energies, MDPI, vol. 16(6), pages 1-32, March.
    5. Darwin-Alexander Angamarca-Avendaño & Jonnathan-Francisco Saquicela-Moncayo & Byron-Humberto Capa-Carrillo & Juan-Carlos Cobos-Torres, 2023. "Charge Equalization System for an Electric Vehicle with a Solar Panel," Energies, MDPI, vol. 16(8), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jasmina Ćetković & Slobodan Lakić & Angelina Živković & Miloš Žarković & Radoje Vujadinović, 2021. "Economic Analysis of Measures for GHG Emission Reduction," Sustainability, MDPI, vol. 13(4), pages 1-25, February.
    2. Athira M. Mohan & Nader Meskin & Hasan Mehrjerdi, 2020. "A Comprehensive Review of the Cyber-Attacks and Cyber-Security on Load Frequency Control of Power Systems," Energies, MDPI, vol. 13(15), pages 1-33, July.
    3. Kaleem Ullah & Abdul Basit & Zahid Ullah & Sheraz Aslam & Herodotos Herodotou, 2021. "Automatic Generation Control Strategies in Conventional and Modern Power Systems: A Comprehensive Overview," Energies, MDPI, vol. 14(9), pages 1-43, April.
    4. Hasan Huseyin Coban & Wojciech Lewicki & Ewelina Sendek-Matysiak & Zbigniew Łosiewicz & Wojciech Drożdż & Radosław Miśkiewicz, 2022. "Electric Vehicles and Vehicle–Grid Interaction in the Turkish Electricity System," Energies, MDPI, vol. 15(21), pages 1-19, November.
    5. Alfredo Alvarez-Diazcomas & Adyr A. Estévez-Bén & Juvenal Rodríguez-Reséndiz & Miguel-Angel Martínez-Prado & Roberto V. Carrillo-Serrano & Suresh Thenozhi, 2020. "A Review of Battery Equalizer Circuits for Electric Vehicle Applications," Energies, MDPI, vol. 13(21), pages 1-29, October.
    6. Huiling Wang & Jiaxin Luo & Mengtian Zhang & Yue Ling, 2022. "The Impact of Transportation Restructuring on the Intensity of Greenhouse Gas Emissions: Empirical Data from China," IJERPH, MDPI, vol. 19(19), pages 1-16, October.
    7. Foda, Ahmed & Abdelaty, Hatem & Mohamed, Moataz & El-Saadany, Ehab, 2023. "A generic cost-utility-emission optimization for electric bus transit infrastructure planning and charging scheduling," Energy, Elsevier, vol. 277(C).
    8. Sheng Xu & Jingxue Chen & Demei Wen, 2023. "Research on the Impact of Carbon Trading Policy on the Structural Upgrading of Marine Industry," Sustainability, MDPI, vol. 15(9), pages 1-17, April.
    9. Wang, Hanjie & Yu, Xiaohua, 2023. "Carbon dioxide emission typology and policy implications: Evidence from machine learning," China Economic Review, Elsevier, vol. 78(C).
    10. Khan Rabnawaz & Kong YuSheng, 2020. "Effects of Energy Consumption on GDP: New Evidence of 24 Countries on Their Natural Resources and Production of Electricity," Ekonomika (Economics), Sciendo, vol. 99(1), pages 26-49, June.
    11. Abdul Hayy Haziq Mohamad & Muhamad Rias K. V. Zainuddin & Rossazana Ab-Rahim, 2023. "Does Renewable Energy Transition in the USA and China Overcome Environmental Degradation?," International Journal of Energy Economics and Policy, Econjournals, vol. 13(6), pages 234-243, November.
    12. Yanming Sun & Shixian Liu & Lei Li, 2022. "Grey Correlation Analysis of Transportation Carbon Emissions under the Background of Carbon Peak and Carbon Neutrality," Energies, MDPI, vol. 15(9), pages 1-24, April.
    13. Jonathan Cohen & Michael B. Kane & Alexia Marriott & Franklin Ollivierre & Krissy Govertsen, 2023. "Economic Controls Co-Design of Hybrid Microgrids with Tidal/PV Generation and Lithium-Ion/Flow Battery Storage," Energies, MDPI, vol. 16(6), pages 1-18, March.
    14. Olja Čokorilo & Ivan Ivković & Snežana Kaplanović, 2019. "Prediction of Exhaust Emission Costs in Air and Road Transportation," Sustainability, MDPI, vol. 11(17), pages 1-18, August.
    15. Luiz Maurício Maués & Norma Beltrão & Isabela Silva, 2021. "GHG Emissions Assessment of Civil Construction Waste Disposal and Transportation Process in the Eastern Amazon," Sustainability, MDPI, vol. 13(10), pages 1-26, May.
    16. Rüdisüli, Martin & Bach, Christian & Bauer, Christian & Beloin-Saint-Pierre, Didier & Elber, Urs & Georges, Gil & Limpach, Robert & Pareschi, Giacomo & Kannan, Ramachandran & Teske, Sinan L., 2022. "Prospective life-cycle assessment of greenhouse gas emissions of electricity-based mobility options," Applied Energy, Elsevier, vol. 306(PB).
    17. Shailendra Rajput & Alon Kuperman & Asher Yahalom & Moshe Averbukh, 2020. "Studies on Dynamic Properties of Ultracapacitors Using Infinite r–C Chain Equivalent Circuit and Reverse Fourier Transform," Energies, MDPI, vol. 13(18), pages 1-11, September.
    18. Barbosa, Társis Prado & Eckert, Jony Javorski & Roso, Vinícius Rückert & Pujatti, Fabrício José Pacheco & da Silva, Leonardo Adolpho Rodrigues & Horta Gutiérrez, Juan Carlos, 2021. "Fuel saving and lower pollutants emissions using an ethanol-fueled engine in a hydraulic hybrid passengers vehicle," Energy, Elsevier, vol. 235(C).
    19. Zou, Weitao & Li, Jianwei & Yang, Qingqing & Wan, Xinming & He, Yuntang & Lan, Hao, 2023. "A real-time energy management approach with fuel cell and battery competition-synergy control for the fuel cell vehicle," Applied Energy, Elsevier, vol. 334(C).
    20. Pan, Lin & Wang, Xudong, 2020. "Variable pitch control on direct-driven PMSG for offshore wind turbine using Repetitive-TS fuzzy PID control," Renewable Energy, Elsevier, vol. 159(C), pages 221-237.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4091-:d:280623. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.