IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i6p2744-d1098208.html
   My bibliography  Save this article

The Use of Evolutionary Algorithms in the Modelling of Diffuse Radiation in Terms of Simulating the Energy Efficiency of Photovoltaic Systems

Author

Listed:
  • Wiktor Olchowik

    (Institute of Electronic Systems, Faculty of Electronics, Military University of Technology, 00-908 Warsaw, Poland)

  • Jędrzej Gajek

    (Institute of Theory of Electrical Engineering, Measurement and Information Systems, Faculty of Electrical Engineering, Warsaw University of Technology, 00-662 Warsaw, Poland)

  • Andrzej Michalski

    (Institute of Theory of Electrical Engineering, Measurement and Information Systems, Faculty of Electrical Engineering, Warsaw University of Technology, 00-662 Warsaw, Poland)

Abstract

In light of the rapidly growing number of photovoltaic micro-grids, the modelling of their short-term power yields based on meteorological measurements is increasing in significance. This requires the knowledge of total and diffuse instantaneous solar radiation; however, most meteorological stations conduct actinometric measurements only with regard to total solar radiation, especially on a minute scale. This paper contains an analysis of the currently used PV cell mathematical model and suggests its modification aimed at calculating PV cell power with satisfactory accuracy, without the knowledge of diffuse solar radiation. Three function families were proposed to approximate the relationship between diffuse irradiance and the total and theoretical total irradiance variance for a cloudless sky. A program has been implemented to identify functions from the aforementioned function families. It leverages an evolution strategy algorithm and a fitness function based on the least-squares point method. It was employed to calculate the desired functions based on actual measurement data. The outcome was the sought-after dependence that enables predicting diffuse irradiance based on more frequently available measurement data.

Suggested Citation

  • Wiktor Olchowik & Jędrzej Gajek & Andrzej Michalski, 2023. "The Use of Evolutionary Algorithms in the Modelling of Diffuse Radiation in Terms of Simulating the Energy Efficiency of Photovoltaic Systems," Energies, MDPI, vol. 16(6), pages 1-32, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2744-:d:1098208
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/6/2744/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/6/2744/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Despotovic, Milan & Nedic, Vladimir & Despotovic, Danijela & Cvetanovic, Slobodan, 2016. "Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 246-260.
    2. Fan, Junliang & Wu, Lifeng & Ma, Xin & Zhou, Hanmi & Zhang, Fucang, 2020. "Hybrid support vector machines with heuristic algorithms for prediction of daily diffuse solar radiation in air-polluted regions," Renewable Energy, Elsevier, vol. 145(C), pages 2034-2045.
    3. Paweł Piotrowski & Mirosław Parol & Piotr Kapler & Bartosz Fetliński, 2022. "Advanced Forecasting Methods of 5-Minute Power Generation in a PV System for Microgrid Operation Control," Energies, MDPI, vol. 15(7), pages 1-23, April.
    4. Muneer, T. & Younes, S. & Munawwar, S., 2007. "Discourses on solar radiation modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(4), pages 551-602, May.
    5. Saioa Etxebarria Berrizbeitia & Eulalia Jadraque Gago & Tariq Muneer, 2020. "Empirical Models for the Estimation of Solar Sky-Diffuse Radiation. A Review and Experimental Analysis," Energies, MDPI, vol. 13(3), pages 1-23, February.
    6. Jean-Pierre Corriou, 2021. "Numerical Methods and Optimization," Springer Optimization and Its Applications, Springer, number 978-3-030-89366-8, September.
    7. Fan, Junliang & Wu, Lifeng & Zhang, Fucang & Cai, Huanjie & Ma, Xin & Bai, Hua, 2019. "Evaluation and development of empirical models for estimating daily and monthly mean daily diffuse horizontal solar radiation for different climatic regions of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 168-186.
    8. Hay, John E., 1993. "Calculating solar radiation for inclined surfaces: Practical approaches," Renewable Energy, Elsevier, vol. 3(4), pages 373-380.
    9. Liu, Yanfeng & Zhou, Yong & Chen, Yaowen & Wang, Dengjia & Wang, Yingying & Zhu, Ying, 2020. "Comparison of support vector machine and copula-based nonlinear quantile regression for estimating the daily diffuse solar radiation: A case study in China," Renewable Energy, Elsevier, vol. 146(C), pages 1101-1112.
    10. Jean-Pierre Corriou, 2021. "Numerical Methods of Optimization," Springer Optimization and Its Applications, in: Numerical Methods and Optimization, chapter 0, pages 505-574, Springer.
    11. Alfredo Alvarez-Diazcomas & Héctor López & Roberto V. Carrillo-Serrano & Juvenal Rodríguez-Reséndiz & Nimrod Vázquez & Gilberto Herrera-Ruiz, 2019. "A Novel Integrated Topology to Interface Electric Vehicles and Renewable Energies with the Grid," Energies, MDPI, vol. 12(21), pages 1-21, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nunez Munoz, Maria & Ballantyne, Erica E.F. & Stone, David A., 2022. "Development and evaluation of empirical models for the estimation of hourly horizontal diffuse solar irradiance in the United Kingdom," Energy, Elsevier, vol. 241(C).
    2. Yang, Liu & Cao, Qimeng & Yu, Ying & Liu, Yan, 2020. "Comparison of daily diffuse radiation models in regions of China without solar radiation measurement," Energy, Elsevier, vol. 191(C).
    3. Hassan, Muhammed A. & Akoush, Bassem M. & Abubakr, Mohamed & Campana, Pietro Elia & Khalil, Adel, 2021. "High-resolution estimates of diffuse fraction based on dynamic definitions of sky conditions," Renewable Energy, Elsevier, vol. 169(C), pages 641-659.
    4. Guosheng Duan & Lifeng Wu & Fa Liu & Yicheng Wang & Shaofei Wu, 2022. "Improvement in Solar-Radiation Forecasting Based on Evolutionary KNEA Method and Numerical Weather Prediction," Sustainability, MDPI, vol. 14(11), pages 1-20, June.
    5. Acikgoz, Hakan, 2022. "A novel approach based on integration of convolutional neural networks and deep feature selection for short-term solar radiation forecasting," Applied Energy, Elsevier, vol. 305(C).
    6. Stanislav Stoykov & Ivan Kostov, 2023. "Price Competition with Differentiated Products on a Two-Dimensional Plane: The Impact of Partial Cartel on Firms’ Profits and Behavior," Games, MDPI, vol. 14(2), pages 1-25, March.
    7. Fan, Junliang & Ma, Xin & Wu, Lifeng & Zhang, Fucang & Yu, Xiang & Zeng, Wenzhi, 2019. "Light Gradient Boosting Machine: An efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data," Agricultural Water Management, Elsevier, vol. 225(C).
    8. Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
    9. Ağbulut, Ümit & Gürel, Ali Etem & Biçen, Yunus, 2021. "Prediction of daily global solar radiation using different machine learning algorithms: Evaluation and comparison," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    10. Feng, Yu & Hao, Weiping & Li, Haoru & Cui, Ningbo & Gong, Daozhi & Gao, Lili, 2020. "Machine learning models to quantify and map daily global solar radiation and photovoltaic power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    11. Ariel Villalón & Carlos Muñoz & Javier Muñoz & Marco Rivera, 2023. "Fixed-Switching-Frequency Modulated Model Predictive Control for Islanded AC Microgrid Applications," Mathematics, MDPI, vol. 11(3), pages 1-27, January.
    12. Kieu Anh Nguyen & Walter Chen & Bor-Shiun Lin & Uma Seeboonruang, 2020. "Using Machine Learning-Based Algorithms to Analyze Erosion Rates of a Watershed in Northern Taiwan," Sustainability, MDPI, vol. 12(5), pages 1-16, March.
    13. Chen, Jun-Yu & Feng, Yun-Wen & Teng, Da & Lu, Cheng & Fei, Cheng-Wei, 2022. "Support vector machine-based similarity selection method for structural transient reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    14. Liu, Yanfeng & Zhou, Yong & Chen, Yaowen & Wang, Dengjia & Wang, Yingying & Zhu, Ying, 2020. "Comparison of support vector machine and copula-based nonlinear quantile regression for estimating the daily diffuse solar radiation: A case study in China," Renewable Energy, Elsevier, vol. 146(C), pages 1101-1112.
    15. Jasiewicz Jarosław & Cierniewski Jerzy, 2021. "SALBEC – A Python Library and GUI Application to Calculate the Diurnal Variation of the Soil Albedo," Quaestiones Geographicae, Sciendo, vol. 40(3), pages 95-107, September.
    16. Luo, Laipeng & Zhang, Zhiyi & Li, Chong & Nishu, & He, Fang & Zhang, Xingguang & Cai, Junmeng, 2021. "Insight into master plots method for kinetic analysis of lignocellulosic biomass pyrolysis," Energy, Elsevier, vol. 233(C).
    17. Alfredo Alvarez-Diazcomas & Adyr A. Estévez-Bén & Juvenal Rodríguez-Reséndiz & Miguel-Angel Martínez-Prado & Roberto V. Carrillo-Serrano & Suresh Thenozhi, 2020. "A Review of Battery Equalizer Circuits for Electric Vehicle Applications," Energies, MDPI, vol. 13(21), pages 1-29, October.
    18. Zhengwei Huang & Jin Huang & Jintao Min, 2022. "SSA-LSTM: Short-Term Photovoltaic Power Prediction Based on Feature Matching," Energies, MDPI, vol. 15(20), pages 1-16, October.
    19. Shahaboddin Shamshirband & Masoud Hadipoor & Alireza Baghban & Amir Mosavi & Jozsef Bukor & Annamária R. Várkonyi-Kóczy, 2019. "Developing an ANFIS-PSO Model to Predict Mercury Emissions in Combustion Flue Gases," Mathematics, MDPI, vol. 7(10), pages 1-16, October.
    20. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2744-:d:1098208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.