IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i3p643-d136180.html
   My bibliography  Save this article

Development and Validation of 3D-CFD Injection and Combustion Models for Dual Fuel Combustion in Diesel Ignited Large Gas Engines

Author

Listed:
  • Lucas Eder

    (Large Engines Competence Center, 8010 Graz, Austria)

  • Marko Ban

    (Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, 10002 Zagreb, Croatia)

  • Gerhard Pirker

    (Large Engines Competence Center, 8010 Graz, Austria)

  • Milan Vujanovic

    (Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, 10002 Zagreb, Croatia)

  • Peter Priesching

    (AVL List GmbH, Graz 8020, Austria)

  • Andreas Wimmer

    (Institute of Internal Combustion Engine and Thermodynamics, Graz University of Technology, 8010 Graz, Austria)

Abstract

This paper focuses on improving the 3D-Computational Fluid Dynamics (CFD) modeling of diesel ignited gas engines, with an emphasis on injection and combustion modeling. The challenges of modeling are stated and possible solutions are provided. A specific approach for modeling injection is proposed that improves the modeling of the ballistic region of the needle lift. Experimental results from an inert spray chamber are used for model validation. Two-stage ignition methods are described along with improvements in ignition delay modeling of the diesel ignited gas engine. The improved models are used in the Extended Coherent Flame Model with the 3 Zones approach (ECFM-3Z). The predictive capability of the models is investigated using data from single cylinder engine (SCE) tests conducted at the Large Engines Competence Center (LEC). The results are discussed and further steps for development are identified.

Suggested Citation

  • Lucas Eder & Marko Ban & Gerhard Pirker & Milan Vujanovic & Peter Priesching & Andreas Wimmer, 2018. "Development and Validation of 3D-CFD Injection and Combustion Models for Dual Fuel Combustion in Diesel Ignited Large Gas Engines," Energies, MDPI, vol. 11(3), pages 1-23, March.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:643-:d:136180
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/3/643/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/3/643/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:hal:spmain:info:hdl:2441/jff6fcqc8e6bbhnlvps4rou6 is not listed on IDEAS
    2. Verdolini, Elena & Vona, Francesco & Popp, David, 2018. "Bridging the gap: Do fast-reacting fossil technologies facilitate renewable energy diffusion?," Energy Policy, Elsevier, vol. 116(C), pages 242-256.
    3. repec:spo:wpmain:info:hdl:2441/jff6fcqc8e6bbhnlvps4rou6 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sebastian Schuh & Ajoy Kumar Ramalingam & Heiko Minwegen & Karl Alexander Heufer & Franz Winter, 2019. "Experimental Investigation and Benchmark Study of Oxidation of Methane–Propane–n-Heptane Mixtures at Pressures up to 100 bar," Energies, MDPI, vol. 12(18), pages 1-20, September.
    2. Sebastian Schuh & Jens Frühhaber & Thomas Lauer & Franz Winter, 2019. "A Novel Dual Fuel Reaction Mechanism for Ignition in Natural Gas–Diesel Combustion," Energies, MDPI, vol. 12(22), pages 1-32, November.
    3. Thomas Lauer & Jens Frühhaber, 2020. "Towards a Predictive Simulation of Turbulent Combustion?—An Assessment for Large Internal Combustion Engines," Energies, MDPI, vol. 14(1), pages 1-26, December.
    4. Jingrui Li & Jietuo Wang & Teng Liu & Jingjin Dong & Bo Liu & Chaohui Wu & Ying Ye & Hu Wang & Haifeng Liu, 2019. "An Investigation of the Influence of Gas Injection Rate Shape on High-Pressure Direct-Injection Natural Gas Marine Engines," Energies, MDPI, vol. 12(13), pages 1-18, July.
    5. Sebastian Schuh & Franz Winter, 2020. "Dual Fuel Reaction Mechanism 2.0 including NO x Formation and Laminar Flame Speed Calculations Using Methane/Propane/ n -Heptane Fuel Blends," Energies, MDPI, vol. 13(4), pages 1-31, February.
    6. Marija Stipic & Branislav Basara & Steffen J. Schmidt & Nikolaus A. Adams, 2023. "Tabulated Chemistry Combustion Model for Cost-Effective Numerical Simulation of Dual-Fuel Combustion Process," Energies, MDPI, vol. 16(24), pages 1-22, December.
    7. Van Chien Pham & Jae-Hyuk Choi & Beom-Seok Rho & Jun-Soo Kim & Kyunam Park & Sang-Kyun Park & Van Vang Le & Won-Ju Lee, 2021. "A Numerical Study on the Combustion Process and Emission Characteristics of a Natural Gas-Diesel Dual-Fuel Marine Engine at Full Load," Energies, MDPI, vol. 14(5), pages 1-28, March.
    8. Francesco Calise & Mário Costa & Qiuwang Wang & Xiliang Zhang & Neven Duić, 2018. "Recent Advances in the Analysis of Sustainable Energy Systems," Energies, MDPI, vol. 11(10), pages 1-30, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:spo:wpmain:info:hdl:2441/2qaasbmk6u8cj8maoa30ls1roi is not listed on IDEAS
    2. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    3. Lionel Nesta & Elena Verdolini & Francesco Vona, 2018. "Threshold policy effects and directed technical change in Energy Innovation," SciencePo Working papers Main hal-03475570, HAL.
    4. Nicoletta Batini & Ian W.H. Parry & Mr. Philippe Wingender, 2020. "Climate Mitigation Policy in Denmark: A Prototype for Other Countries," IMF Working Papers 2020/235, International Monetary Fund.
    5. Conti, C. & Mancusi, M.L. & Sanna-Randaccio, F. & Sestini, R. & Verdolini, E., 2018. "Transition towards a green economy in Europe: Innovation and knowledge integration in the renewable energy sector," Research Policy, Elsevier, vol. 47(10), pages 1996-2009.
    6. Mr. Nicolas Arregui & Ian W.H. Parry, 2020. "Reconsidering Climate Mitigation Policy in the UK," IMF Working Papers 2020/268, International Monetary Fund.
    7. Durmaz, Tunç & Acar, Sevil & Kızılkaya, Simay, 2024. "Generation failures, strategic withholding, and capacity payments in the Turkish electricity market," Energy Policy, Elsevier, vol. 184(C).
    8. Abdulla, A. & Vaishnav, P. & Sergi, B. & Victor, D.G., 2019. "Limits to deployment of nuclear power for decarbonization: Insights from public opinion," Energy Policy, Elsevier, vol. 129(C), pages 1339-1346.
    9. He, Rui-fang & Zhong, Mei-rui & Huang, Jian-bai, 2021. "The dynamic effects of renewable-energy and fossil-fuel technological progress on metal consumption in the electric power industry," Resources Policy, Elsevier, vol. 71(C).
    10. Bashir, Muhammad Farhan & Pata, Ugur Korkut & Shahzad, Luqman, 2025. "Linking climate change, energy transition and renewable energy investments to combat energy security risks: Evidence from top energy consuming economies," Energy, Elsevier, vol. 314(C).
    11. Bonnet, Paolo & Olper, Alessandro, 2024. "Party affiliation, economic interests and U.S. governors’ renewable energy policies," Energy Economics, Elsevier, vol. 130(C).
    12. Zeeshan Khan & Muhsin Ali & Dervis Kirikkaleli & Salman Wahab & Zhilun Jiao, 2020. "The impact of technological innovation and public‐private partnership investment on sustainable environment in China: Consumption‐based carbon emissions analysis," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(5), pages 1317-1330, September.
    13. Hille, Erik & Oelker, Thomas J., 2023. "International expansion of renewable energy capacities: The role of innovation and choice of policy instruments," Ecological Economics, Elsevier, vol. 204(PA).
    14. Tadeusz Skoczkowski & Sławomir Bielecki & Joanna Wojtyńska, 2019. "Long-Term Projection of Renewable Energy Technology Diffusion," Energies, MDPI, vol. 12(22), pages 1-24, November.
    15. Yanbing Mao & Kui Liu & Jizhi Zhou, 2019. "Evolution of Green Industrial Growth between Europe and China based on the Energy Consumption Model," Sustainability, MDPI, vol. 11(24), pages 1-15, December.
    16. Carroll, Deborah A. & Stevens, Kelly A., 2021. "The short-term impact on emissions and federal tax revenue of a carbon tax in the U.S. electricity sector," Energy Policy, Elsevier, vol. 158(C).
    17. Su, Xing & Xu, Zehan & Tian, Shaochen & Chen, Chaoyang & Huang, Yixiang & Geng, Yining & Chen, Junfeng, 2023. "Life cycle assessment of three typical solar energy utilization systems in different regions of China," Energy, Elsevier, vol. 278(C).
    18. Razzaq, Asif & Sharif, Arshian & Afshan, Sahar & Li, Claire J., 2023. "Do climate technologies and recycling asymmetrically mitigate consumption-based carbon emissions in the United States? New insights from Quantile ARDL," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
    19. Rutzer, Christian & Niggli, Matthias, 2020. "Environmental Policy and Heterogeneous Labor Market Effects: Evidence from Europe," Working papers 2020/09, Faculty of Business and Economics - University of Basel.
    20. Huangfu, Jianhua & Wei, Weixian & Yu, Lei & Li, Guoliang, 2025. "The impact of environmental policy stringency and oil prices on innovation: Evidence from the new energy vehicle industry in China," Economic Analysis and Policy, Elsevier, vol. 85(C), pages 979-996.
    21. Siamak Javadi & Abdullah‐Al Masum & Mohsen Aram & Ramesh P. Rao, 2023. "Climate change and corporate cash holdings: Global evidence," Financial Management, Financial Management Association International, vol. 52(2), pages 253-295, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:643-:d:136180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.