IDEAS home Printed from https://ideas.repec.org/a/gam/jecnmx/v3y2015i3p532-560d52631.html
   My bibliography  Save this article

New Graphical Methods and Test Statistics for Testing Composite Normality

Author

Listed:
  • Marc S. Paolella

    (Department of Banking and Finance, University of Zurich, Plattenstrasse 14, 8032 Zurich, Switzerland
    Swiss Finance Institute, Walchestrasse 9 CH-8006 Zurich, Switzerland)

Abstract

Several graphical methods for testing univariate composite normality from an i.i.d. sample are presented. They are endowed with correct simultaneous error bounds and yield size-correct tests. As all are based on the empirical CDF, they are also consistent for all alternatives. For one test, called the modified stabilized probability test, or MSP, a highly simplified computational method is derived, which delivers the test statistic and also a highly accurate p-value approximation, essentially instantaneously. The MSP test is demonstrated to have higher power against asymmetric alternatives than the well-known and powerful Jarque-Bera test. A further size-correct test, based on combining two test statistics, is shown to have yet higher power. The methodology employed is fully general and can be applied to any i.i.d. univariate continuous distribution setting.

Suggested Citation

  • Marc S. Paolella, 2015. "New Graphical Methods and Test Statistics for Testing Composite Normality," Econometrics, MDPI, vol. 3(3), pages 1-29, July.
  • Handle: RePEc:gam:jecnmx:v:3:y:2015:i:3:p:532-560:d:52631
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2225-1146/3/3/532/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2225-1146/3/3/532/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thanasis Stengos & Ximing Wu, 2010. "Information-Theoretic Distribution Test with Application to Normality," Econometric Reviews, Taylor & Francis Journals, vol. 29(3), pages 307-329.
    2. Sivan Aldor-Noiman & Lawrence D. Brown & Andreas Buja & Wolfgang Rolke & Robert A. Stine, 2014. "Aldor-Noiman, S., Brown, L.D., Buja, A., Rolke, W., and Stine, R.A. (2013), "The Power to See: A New Graphical Test of Normality," The American Statistician , 67, 249-260," The American Statistician, Taylor & Francis Journals, vol. 68(4), pages 318-318, November.
    3. Sivan Aldor-Noiman & Lawrence D. Brown & Andreas Buja & Wolfgang Rolke & Robert A. Stine, 2013. "The Power to See: A New Graphical Test of Normality," The American Statistician, Taylor & Francis Journals, vol. 67(4), pages 249-260, November.
    4. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
    5. Einmahl, J.H.J. & McKeague, I.W., 1999. "Confidence tubes for multiple quantile plots via empirical likelihood," Other publications TiSEM b64493f8-1c01-40fd-b16d-7, Tilburg University, School of Economics and Management.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gambacciani, Marco & Paolella, Marc S., 2017. "Robust normal mixtures for financial portfolio allocation," Econometrics and Statistics, Elsevier, vol. 3(C), pages 91-111.
    2. Marc S. Paolella, 2017. "The Univariate Collapsing Method for Portfolio Optimization," Econometrics, MDPI, vol. 5(2), pages 1-33, May.
    3. Paolella, Marc S., 2017. "Asymmetric stable Paretian distribution testing," Econometrics and Statistics, Elsevier, vol. 1(C), pages 19-39.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ekrem Kilic, 2005. "A Nonparametric Way of Distribution Testing," Econometrics 0510006, University Library of Munich, Germany.
    2. Roberto Martínez-Espiñeira, 2007. "An estimation of residential water demand using co-integration and error correction tec hniques," Journal of Applied Economics, Universidad del CEMA, vol. 10, pages 161-184, May.
    3. Jinan Liu & Apostolos Serletis, 2023. "Volatility and dependence in energy markets," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 47(1), pages 15-37, March.
    4. Bierens, H.J. & Broersma, L., 1991. "The relation between unemployment and interest rate : some international evidence," Serie Research Memoranda 0112, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    5. Tack, Jesse, 2013. "A Nested Test for Common Yield Distributions with Applications to U.S. Corn," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 38(01), pages 1-14, April.
    6. Gourieroux, C. & Laurent, J. P. & Scaillet, O., 2000. "Sensitivity analysis of Values at Risk," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 225-245, November.
    7. Halldén, Filip & Hultberg, Anna & Ahmed, Ali & Uddin, Gazi Salah & Yahya, Muhammad & Troster, Victor, 2025. "The role of institutional quality on public renewable energy investments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 215(C).
    8. Juncal Cunado & David Gabauer & Rangan Gupta, 2024. "Realized volatility spillovers between energy and metal markets: a time-varying connectedness approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-17, December.
    9. Amendola, Alessandra & Niglio, Marcella & Vitale, Cosimo, 2006. "The moments of SETARMA models," Statistics & Probability Letters, Elsevier, vol. 76(6), pages 625-633, March.
    10. Elie Bouri & Georges Azzi, 2014. "On the Dynamic Transmission of Mean and Volatility across the Arab Stock Markets," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 13(3), pages 279-304, December.
    11. Raul Anibal Feliz & John H. Welch, 1992. "Cointegration and tests of a classical model of inflation in Argentina, Bolivia, Brazil, Mexico, And Peru," Working Papers 9210, Federal Reserve Bank of Dallas.
    12. Elie Bouri & Mahdi Ghaemi Asl & Sahar Darehshiri & David Gabauer, 2024. "Asymmetric connectedness between conventional and Islamic cryptocurrencies: Evidence from good and bad volatility spillovers," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-26, December.
    13. Alolo, Mutaka & Azevedo, Alcino & El Kalak, Izidin, 2020. "The effect of the feed-in-system policy on renewable energy investments: Evidence from the EU countries," Energy Economics, Elsevier, vol. 92(C).
    14. Jan Marc Berk & Job Swank, 2007. "Regional real exchange rates and Phillips curves in monetary unions - Evidence from the US and EMU," DNB Working Papers 147, Netherlands Central Bank, Research Department.
    15. Eric Fur, 2023. "Risk and return of classic car market prices: passion or financial investment?," Journal of Asset Management, Palgrave Macmillan, vol. 24(1), pages 59-68, February.
    16. Balcilar, Mehmet & Hammoudeh, Shawkat & Toparli, Elif Akay, 2018. "On the risk spillover across the oil market, stock market, and the oil related CDS sectors: A volatility impulse response approach," Energy Economics, Elsevier, vol. 74(C), pages 813-827.
    17. Abdullah, Mohammad & Chowdhury, Mohammad Ashraful Ferdous & Wali Ullah, G.M., 2025. "Asymmetric tail risk dynamics, efficiency and risk spillover among FinTech stocks, cryptocurrencies and traditional assets," Global Finance Journal, Elsevier, vol. 64(C).
    18. Georgiev, Iliyan, 2010. "Model-based asymptotic inference on the effect of infrequent large shocks on cointegrated variables," Journal of Econometrics, Elsevier, vol. 158(1), pages 37-50, September.
    19. Ericsson, Neil R., 2016. "Eliciting GDP forecasts from the FOMC’s minutes around the financial crisis," International Journal of Forecasting, Elsevier, vol. 32(2), pages 571-583.
    20. Matthias Duschl & Thomas Brenner, 2013. "Characteristics of regional industry-specific employment growth rates' distributions," Papers in Regional Science, Wiley Blackwell, vol. 92(2), pages 249-270, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecnmx:v:3:y:2015:i:3:p:532-560:d:52631. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.