IDEAS home Printed from https://ideas.repec.org/a/gam/jcltec/v2y2020i3p18-289d387006.html
   My bibliography  Save this article

Torrefied Biomass as an Alternative in Coal-Fueled Power Plants: A Case Study on Grindability of Agroforestry Waste Forms

Author

Listed:
  • Leonel J. R. Nunes

    (PROMETHEUS—Unidade de Investigação em Materiais, Energia e Ambiente para a Sustentabilidade, Escola Superior Agrária, Instituto Politécnico de Viana do Castelo, Rua da Escola Industrial e Comercial de Nun’Alvares, 4900-347 Viana do Castelo, Portugal
    GOVCOPP—Unidade de Investigação em Governança, Competitividade e Políticas Públicas, DEGEIT-Departamento de Economia, Gestão, Engenharia Industrial e Turismo, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
    YGE—Yser Green Energy SA, Área de Acolhimento Empresarial de Úl/Loureiro, Lote 17, 3720-075 Loureiro OAZ, Portugal
    AFS—Advanced Fuel Solutions SA, Área de Acolhimento Empresarial de Úl/Loureiro, Lote 17, 3720-075 Loureiro OAZ, Portugal)

Abstract

The use of biomass as a renewable energy source is currently a reality, mainly due to the role it can play in replacing fossil energy sources. Within this possibility, coal substitution in the production of electric energy presents itself as a strong alternative with high potential, mostly due to the possibility of contributing to the decarbonization of energy production while, at the same time, contributing to the circularization of energy generation processes. This can be achieved through the use of biomass waste forms, which have undergone a process of improving their properties, such as torrefaction. However, for this to be viable, it is necessary that the biomass has a set of characteristics similar to those of coal, such that its use may occur in previously installed systems. In particular, with respect to grindability, which is associated with one of the core equipment technologies of coal-fired power plants—the coal mill. The objective of the present study is to determine the potential of certain residues with agroforestry origins as a replacement for coal in power generation by using empirical methods. Selected materials—namely, almond shells, kiwifruit pruning, vine pruning, olive pomace, pine woodchips, and eucalyptus woodchips—are characterized in this regard. The materials were characterized in the laboratory and submitted to a torrefaction process at 300 °C. Then, the Statistical Grindability Index and the Hardgrove Grindability Index were determined, using empirical methods derived from coal analysis. The results obtained indicate the good potential of the studied biomasses for use in large-scale torrefaction processes and as replacements for coal in the generation of electrical energy. However, further tests are still needed, particularly relating to the definition of the ideal parameters of the torrefaction process, in order to optimize the grindability of the materials.

Suggested Citation

  • Leonel J. R. Nunes, 2020. "Torrefied Biomass as an Alternative in Coal-Fueled Power Plants: A Case Study on Grindability of Agroforestry Waste Forms," Clean Technol., MDPI, vol. 2(3), pages 1-20, July.
  • Handle: RePEc:gam:jcltec:v:2:y:2020:i:3:p:18-289:d:387006
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-8797/2/3/18/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-8797/2/3/18/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Wei-Hsin & Peng, Jianghong & Bi, Xiaotao T., 2015. "A state-of-the-art review of biomass torrefaction, densification and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 847-866.
    2. Sam Aflaki & Serguei Netessine, 2017. "Strategic Investment in Renewable Energy Sources: The Effect of Supply Intermittency," Manufacturing & Service Operations Management, INFORMS, vol. 19(3), pages 489-507, July.
    3. Zhao, Peitao & Shen, Yafei & Ge, Shifu & Chen, Zhenqian & Yoshikawa, Kunio, 2014. "Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment," Applied Energy, Elsevier, vol. 131(C), pages 345-367.
    4. Deboni, Tamires Liza & Simioni, Flávio José & Brand, Martha Andreia & Lopes, Gisele Paim, 2019. "Evolution of the quality of forest biomass for energy generation in a cogeneration plant," Renewable Energy, Elsevier, vol. 135(C), pages 1291-1302.
    5. Elum, Z.A., 2017. "A Review of Status and Potentials of Agriculture as a Renewable Energy Source in Climate Change Mitigation in Nigeria," Nigerian Agricultural Policy Research Journal (NAPReJ), Agricultural Policy Research Network (APRNet), vol. 2(1), August.
    6. Niu, Yanqing & Lv, Yuan & Lei, Yu & Liu, Siqi & Liang, Yang & Wang, Denghui & Hui, Shi'en, 2019. "Biomass torrefaction: properties, applications, challenges, and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    7. Wang, L. & Barta-Rajnai, E. & Skreiberg, Ø. & Khalil, R. & Czégény, Z. & Jakab, E. & Barta, Z. & Grønli, M., 2018. "Effect of torrefaction on physiochemical characteristics and grindability of stem wood, stump and bark," Applied Energy, Elsevier, vol. 227(C), pages 137-148.
    8. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    9. Kalembkiewicz, Jan & Chmielarz, Urszula, 2012. "Ashes from co-combustion of coal and biomass: New industrial wastes," Resources, Conservation & Recycling, Elsevier, vol. 69(C), pages 109-121.
    10. Gautam Gowrisankaran & Stanley S. Reynolds & Mario Samano, 2016. "Intermittency and the Value of Renewable Energy," Journal of Political Economy, University of Chicago Press, vol. 124(4), pages 1187-1234.
    11. Marco Manzone & Fabrizio Gioelli & Paolo Balsari, 2019. "Effects of Different Storage Techniques on Round-Baled Orchard-Pruning Residues," Energies, MDPI, vol. 12(6), pages 1-10, March.
    12. Bunn, Derek W. & Redondo-Martin, Jorge & Muñoz-Hernandez, José I. & Diaz-Cachinero, Pablo, 2019. "Analysis of coal conversion to biomass as a transitional technology," Renewable Energy, Elsevier, vol. 132(C), pages 752-760.
    13. Rodolfo Picchio & Raffaello Spina & Alessandro Sirna & Angela Lo Monaco & Vincenzo Civitarese & Angelo Del Giudice & Alessandro Suardi & Luigi Pari, 2012. "Characterization of Woodchips for Energy from Forestry and Agroforestry Production," Energies, MDPI, vol. 5(10), pages 1-14, September.
    14. Geier, M. & Shaddix, C.R. & Davis, K.A. & Shim, H.-S., 2012. "On the use of single-film models to describe the oxy-fuel combustion of pulverized coal char," Applied Energy, Elsevier, vol. 93(C), pages 675-679.
    15. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2015. "Analysis of the use of biomass as an energy alternative for the Portuguese textile dyeing industry," Energy, Elsevier, vol. 84(C), pages 503-508.
    16. Jorge Miguel Carneiro Ribeiro & Radu Godina & João Carlos de Oliveira Matias & Leonel Jorge Ribeiro Nunes, 2018. "Future Perspectives of Biomass Torrefaction: Review of the Current State-Of-The-Art and Research Development," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
    17. Hanak, D.P. & Kolios, A.J. & Biliyok, C. & Manovic, V., 2015. "Probabilistic performance assessment of a coal-fired power plant," Applied Energy, Elsevier, vol. 139(C), pages 350-364.
    18. Teresa Enes & José Aranha & Teresa Fonseca & Domingos Lopes & Ana Alves & José Lousada, 2019. "Thermal Properties of Residual Agroforestry Biomass of Northern Portugal," Energies, MDPI, vol. 12(8), pages 1-13, April.
    19. Volpe, Roberto & Messineo, Antonio & Millan, Marcos & Volpe, Maurizio & Kandiyoti, Rafael, 2015. "Assessment of olive wastes as energy source: pyrolysis, torrefaction and the key role of H loss in thermal breakdown," Energy, Elsevier, vol. 82(C), pages 119-127.
    20. Yarima Torreiro & Leticia Pérez & Gonzalo Piñeiro & Francisco Pedras & Angela Rodríguez-Abalde, 2020. "The Role of Energy Valuation of Agroforestry Biomass on the Circular Economy," Energies, MDPI, vol. 13(10), pages 1-13, May.
    21. Arkadiusz Dyjakon & Daniel García-Galindo, 2019. "Implementing Agricultural Pruning to Energy in Europe: Technical, Economic and Implementation Potentials," Energies, MDPI, vol. 12(8), pages 1-28, April.
    22. Mohd Faizal, Hasan & Shamsuddin, Hielfarith Suffri & M. Heiree, M. Harif & Muhammad Ariff Hanaffi, Mohd Fuad & Abdul Rahman, Mohd Rosdzimin & Rahman, Md. Mizanur & Latiff, Z.A., 2018. "Torrefaction of densified mesocarp fibre and palm kernel shell," Renewable Energy, Elsevier, vol. 122(C), pages 419-428.
    23. Helder Filipe dos Santos Viana & Abel Martins Rodrigues & Radu Godina & João Carlos de Oliveira Matias & Leonel Jorge Ribeiro Nunes, 2018. "Evaluation of the Physical, Chemical and Thermal Properties of Portuguese Maritime Pine Biomass," Sustainability, MDPI, vol. 10(8), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leonel J. R. Nunes & Liliana M. E. F. Loureiro & Letícia C. R. Sá & Hugo F. C. Silva, 2020. "Waste Recovery through Thermochemical Conversion Technologies: A Case Study with Several Portuguese Agroforestry By-Products," Clean Technol., MDPI, vol. 2(3), pages 1-15, September.
    2. Reyes, Y.A. & Pérez, M. & Barrera, E.L. & Martínez, Y. & Cheng, K.K., 2022. "Thermochemical conversion processes of Dichrostachys cinerea as a biofuel: A review of the Cuban case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    3. Abdulyekeen, Kabir Abogunde & Umar, Ahmad Abulfathi & Patah, Muhamad Fazly Abdul & Daud, Wan Mohd Ashri Wan, 2021. "Torrefaction of biomass: Production of enhanced solid biofuel from municipal solid waste and other types of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Leonel Jorge Ribeiro Nunes & Radu Godina & João Carlos de Oliveira Matias, 2019. "Technological Innovation in Biomass Energy for the Sustainable Growth of Textile Industry," Sustainability, MDPI, vol. 11(2), pages 1-12, January.
    5. Leonel J. R. Nunes & João C. O. Matias, 2020. "Biomass Torrefaction as a Key Driver for the Sustainable Development and Decarbonization of Energy Production," Sustainability, MDPI, vol. 12(3), pages 1-9, January.
    6. Siwal, Samarjeet Singh & Zhang, Qibo & Devi, Nishu & Saini, Adesh Kumar & Saini, Vipin & Pareek, Bhawna & Gaidukovs, Sergejs & Thakur, Vijay Kumar, 2021. "Recovery processes of sustainable energy using different biomass and wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    7. Leonel J. R. Nunes & Abel M. Rodrigues & João C. O. Matias & Ana I. Ferraz & Ana C. Rodrigues, 2021. "Production of Biochar from Vine Pruning: Waste Recovery in the Wine Industry," Agriculture, MDPI, vol. 11(6), pages 1-15, May.
    8. Niu, Yanqing & Lv, Yuan & Lei, Yu & Liu, Siqi & Liang, Yang & Wang, Denghui & Hui, Shi'en, 2019. "Biomass torrefaction: properties, applications, challenges, and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    9. Barskov, Stan & Zappi, Mark & Buchireddy, Prashanth & Dufreche, Stephen & Guillory, John & Gang, Daniel & Hernandez, Rafael & Bajpai, Rakesh & Baudier, Jeff & Cooper, Robbyn & Sharp, Richard, 2019. "Torrefaction of biomass: A review of production methods for biocoal from cultured and waste lignocellulosic feedstocks," Renewable Energy, Elsevier, vol. 142(C), pages 624-642.
    10. Beatriz M. Paredes-Sánchez & José P. Paredes-Sánchez & Paulino J. García-Nieto, 2020. "Energy Multiphase Model for Biocoal Conversion Systems by Means of a Nodal Network," Energies, MDPI, vol. 13(11), pages 1-13, May.
    11. Sukiran, Mohamad Azri & Wan Daud, Wan Mohd Ashri & Abnisa, Faisal & Nasrin, Abu Bakar & Abdul Aziz, Astimar & Loh, Soh Kheang, 2021. "A comprehensive study on torrefaction of empty fruit bunches: Characterization of solid, liquid and gas products," Energy, Elsevier, vol. 230(C).
    12. Maja Ivanovski & Aleksandra Petrovič & Darko Goričanec & Danijela Urbancl & Marjana Simonič, 2023. "Exploring the Properties of the Torrefaction Process and Its Prospective in Treating Lignocellulosic Material," Energies, MDPI, vol. 16(18), pages 1-20, September.
    13. Liu, Tianyu & Wen, Chang & Li, Changkang & Yan, Kai & Li, Rui & Jing, Zhenqi & Zhang, Bohan & Ma, Jingjing, 2022. "Integrated water washing and carbonization pretreatment of typical herbaceous and woody biomass: Fuel properties, combustion behaviors, and techno-economic assessments," Renewable Energy, Elsevier, vol. 200(C), pages 218-233.
    14. Chai, Meiyun & Xie, Li & Yu, Xi & Zhang, Xingguang & Yang, Yang & Rahman, Md. Maksudur & Blanco, Paula H. & Liu, Ronghou & Bridgwater, Anthony V. & Cai, Junmeng, 2021. "Poplar wood torrefaction: Kinetics, thermochemistry and implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    15. Arkadiusz Dyjakon & Tomasz Noszczyk, 2020. "Alternative Fuels from Forestry Biomass Residue: Torrefaction Process of Horse Chestnuts, Oak Acorns, and Spruce Cones," Energies, MDPI, vol. 13(10), pages 1-19, May.
    16. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    17. Kambo, Harpreet Singh & Dutta, Animesh, 2015. "A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 359-378.
    18. Ansari, Khursheed B. & Gaikar, Vilas G., 2019. "Investigating production of hydrocarbon rich bio-oil from grassy biomass using vacuum pyrolysis coupled with online deoxygenation of volatile products over metallic iron," Renewable Energy, Elsevier, vol. 130(C), pages 305-318.
    19. Christoforou, Elias A. & Fokaides, Paris A., 2016. "Life cycle assessment (LCA) of olive husk torrefaction," Renewable Energy, Elsevier, vol. 90(C), pages 257-266.
    20. Joseph I. Orisaleye & Simeon O. Jekayinfa & Ralf Pecenka & Adebayo A. Ogundare & Michael O. Akinseloyin & Opeyemi L. Fadipe, 2022. "Investigation of the Effects of Torrefaction Temperature and Residence Time on the Fuel Quality of Corncobs in a Fixed-Bed Reactor," Energies, MDPI, vol. 15(14), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jcltec:v:2:y:2020:i:3:p:18-289:d:387006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.