IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i8p1418-d222393.html
   My bibliography  Save this article

Thermal Properties of Residual Agroforestry Biomass of Northern Portugal

Author

Listed:
  • Teresa Enes

    (Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
    Department of Forestry Sciences and Landscape Architecture (CIFAP), University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal)

  • José Aranha

    (Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
    Department of Forestry Sciences and Landscape Architecture (CIFAP), University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal)

  • Teresa Fonseca

    (Department of Forestry Sciences and Landscape Architecture (CIFAP), University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
    Forest Research Centre (CEF), Instituto Superior de Agronomia, Tapada da Ajuda, 1349-017 Lisboa, Portugal)

  • Domingos Lopes

    (Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
    Department of Forestry Sciences and Landscape Architecture (CIFAP), University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal)

  • Ana Alves

    (Forest Research Centre (CEF), Instituto Superior de Agronomia, Tapada da Ajuda, 1349-017 Lisboa, Portugal)

  • José Lousada

    (Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
    Department of Forestry Sciences and Landscape Architecture (CIFAP), University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal)

Abstract

Biomass from forestry and agricultural sector provides an important contribution to encounter the government’s targets for increasing bioenergy production and utilization. Characterization of agricultural and forest wastes are critical for exploiting and utilizing them for energy purpose. In the present work agricultural and forest wastes and shrubs were sampled in two sites in north Portugal (Ave and Sabor basin) and subjected to Higher Heating Value (HHV) and chemical composition quantification. The HHV was evaluated according to the methodology described in Standard DD CEN/TS14918:2005. For the lignin content, the procedure was made by the Klason method and the extractives content was determined with the Soxhlet method. For agricultural and forest wastes the HHV values are identical with a range of 17 to 21 MJ·kg −1 . However, shrubs biomass presentx slightly higher and statistically different values from agricultural and forest wastes, varying between 19 and 21 MJ·kg −1 . Forest wastes contain higher levels of holocellulose compared to agricultural wastes and, with respect to extractive contents, this trend is the reverse. There is a general tendency for the woody components present thermo-chemical properties more suited for energy purposes, than the residues formed by the branches and leaves.

Suggested Citation

  • Teresa Enes & José Aranha & Teresa Fonseca & Domingos Lopes & Ana Alves & José Lousada, 2019. "Thermal Properties of Residual Agroforestry Biomass of Northern Portugal," Energies, MDPI, vol. 12(8), pages 1-13, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1418-:d:222393
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/8/1418/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/8/1418/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Y. & Zhou, L.W. & Wang, R.Z., 2017. "Urban biomass and methods of estimating municipal biomass resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1017-1030.
    2. František Kačík & Jaroslav Ďurkovič & Danica Kačíková, 2012. "Chemical Profiles of Wood Components of Poplar Clones for Their Energy Utilization," Energies, MDPI, vol. 5(12), pages 1-14, December.
    3. Rentizelas, Athanasios A. & Tolis, Athanasios J. & Tatsiopoulos, Ilias P., 2009. "Logistics issues of biomass: The storage problem and the multi-biomass supply chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 887-894, May.
    4. Saxena, R.C. & Adhikari, D.K. & Goyal, H.B., 2009. "Biomass-based energy fuel through biochemical routes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 167-178, January.
    5. Arkadiusz Dyjakon, 2018. "Harvesting and Baling of Pruned Biomass in Apple Orchards for Energy Production," Energies, MDPI, vol. 11(7), pages 1-14, June.
    6. Helder Filipe dos Santos Viana & Abel Martins Rodrigues & Radu Godina & João Carlos de Oliveira Matias & Leonel Jorge Ribeiro Nunes, 2018. "Evaluation of the Physical, Chemical and Thermal Properties of Portuguese Maritime Pine Biomass," Sustainability, MDPI, vol. 10(8), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reyes, Y.A. & Pérez, M. & Barrera, E.L. & Martínez, Y. & Cheng, K.K., 2022. "Thermochemical conversion processes of Dichrostachys cinerea as a biofuel: A review of the Cuban case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    2. Bernardine Chigozie Chidozie & Ana Luísa Ramos & José Vasconcelos Ferreira & Luís Pinto Ferreira, 2023. "Residual Agroforestry Biomass Supply Chain Simulation Insights and Directions: A Systematic Literature Review," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
    3. Ekaterina S. Titova, 2019. "Biofuel Application as a Factor of Sustainable Development Ensuring: The Case of Russia," Energies, MDPI, vol. 12(20), pages 1-30, October.
    4. Lelis Gonzaga Fraga & João Silva & Senhorinha Teixeira & Delfim Soares & Manuel Ferreira & José Teixeira, 2020. "Influence of Operating Conditions on the Thermal Behavior and Kinetics of Pine Wood Particles Using Thermogravimetric Analysis," Energies, MDPI, vol. 13(11), pages 1-22, June.
    5. Leonel J. R. Nunes & Liliana M. E. F. Loureiro & Letícia C. R. Sá & Hugo F. C. Silva, 2020. "Waste Recovery through Thermochemical Conversion Technologies: A Case Study with Several Portuguese Agroforestry By-Products," Clean Technol., MDPI, vol. 2(3), pages 1-15, September.
    6. Elena Butnaru & Mihai Brebu, 2022. "The Thermochemical Conversion of Forestry Residues from Silver Fir ( Abies alba Mill.) by Torrefaction and Pyrolysis," Energies, MDPI, vol. 15(10), pages 1-20, May.
    7. Leonel J. R. Nunes, 2020. "Torrefied Biomass as an Alternative in Coal-Fueled Power Plants: A Case Study on Grindability of Agroforestry Waste Forms," Clean Technol., MDPI, vol. 2(3), pages 1-20, July.
    8. Pena-Vergara, Gabriel & Castro, Luis Roberto & Gasparetto, Carlos Alberto & Bizzo, Waldir Antonio, 2022. "Energy from planted forest and its residues characterization in Brazil," Energy, Elsevier, vol. 239(PC).
    9. David Muñoz-Rodríguez & Pilar Aparicio-Martínez & Alberto-Jesus Perea-Moreno, 2022. "Contribution of Agroforestry Biomass Valorisation to Energy and Environmental Sustainability," Energies, MDPI, vol. 15(22), pages 1-7, November.
    10. Idalina Domingos & Umit Ayata & José Ferreira & Luisa Cruz-Lopes & Ali Sen & Sirri Sahin & Bruno Esteves, 2020. "Calorific Power Improvement of Wood by Heat Treatment and Its Relation to Chemical Composition," Energies, MDPI, vol. 13(20), pages 1-10, October.
    11. Valentina Zubkova & Andrzej Strojwas & Marcin Bielecki, 2021. "Analysis of the Pyrolytic Behaviour of Birch, Maple, and Rowan Leaves," Energies, MDPI, vol. 14(8), pages 1-18, April.
    12. Mariusz Jerzy Stolarski & Paweł Dudziec & Ewelina Olba-Zięty & Paweł Stachowicz & Michał Krzyżaniak, 2022. "Forest Dendromass as Energy Feedstock: Diversity of Properties and Composition Depending on Systematic Genus and Organ," Energies, MDPI, vol. 15(4), pages 1-60, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Techane Bosona & Girma Gebresenbet, 2018. "Evaluating Logistics Performances of Agricultural Prunings for Energy Production: A Logistics Audit Analysis Approach," Logistics, MDPI, vol. 2(3), pages 1-22, September.
    2. Wang, Zhanwu & Wang, Zhenfeng & Tahir, Nadeem & Wang, Heng & Li, Jin & Xu, Guangyin, 2020. "Study of synergetic development in straw power supply chain: Straw price and government subsidy as incentive," Energy Policy, Elsevier, vol. 146(C).
    3. Arkadiusz Dyjakon, 2018. "The Influence of the Use of Windrowers in Baler Machinery on the Energy Balance during Pruned Biomass Harvesting in the Apple Orchard," Energies, MDPI, vol. 11(11), pages 1-15, November.
    4. Díaz González, Carlos A. & Pacheco Sandoval, Leonardo, 2020. "Sustainability aspects of biomass gasification systems for small power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Carlo Bisaglia & Massimo Brambilla & Maurizio Cutini & Antonio Bortolotti & Guido Rota & Giorgio Minuti & Roberto Sargiani, 2018. "Reusing Pruning Residues for Thermal Energy Production: A Mobile App to Match Biomass Availability with the Heating Energy Balance of Agro-Industrial Buildings," Sustainability, MDPI, vol. 10(11), pages 1-14, November.
    6. Arkadiusz Dyjakon & Jan den Boer & Antoni Szumny & Emilia den Boer, 2019. "Local Energy Use of Biomass from Apple Orchards—An LCA Study," Sustainability, MDPI, vol. 11(6), pages 1-16, March.
    7. Dan Liu & Da Teng & Yan Zhu & Xingde Wang & Hanyang Wang, 2023. "Optimization of Process Parameters for Pellet Production from Corn Stalk Rinds Using Box–Behnken Design," Energies, MDPI, vol. 16(12), pages 1-20, June.
    8. Al-Jabri, Hareb & Das, Probir & Khan, Shoyeb & AbdulQuadir, Mohammad & Thaher, Mehmoud Ibrahim & Hoekman, Kent & Hawari, Alaa H., 2022. "A comparison of bio-crude oil production from five marine microalgae – Using life cycle analysis," Energy, Elsevier, vol. 251(C).
    9. Vasiliki Tzelepi & Myrto Zeneli & Dimitrios-Sotirios Kourkoumpas & Emmanouil Karampinis & Antonios Gypakis & Nikos Nikolopoulos & Panagiotis Grammelis, 2020. "Biomass Availability in Europe as an Alternative Fuel for Full Conversion of Lignite Power Plants: A Critical Review," Energies, MDPI, vol. 13(13), pages 1-26, July.
    10. Leonel Jorge Ribeiro Nunes & Radu Godina & João Carlos de Oliveira Matias, 2019. "Technological Innovation in Biomass Energy for the Sustainable Growth of Textile Industry," Sustainability, MDPI, vol. 11(2), pages 1-12, January.
    11. Wen, Shaoting & Buyukada, Musa & Evrendilek, Fatih & Liu, Jingyong, 2020. "Uncertainty and sensitivity analyses of co-combustion/pyrolysis of textile dyeing sludge and incense sticks: Regression and machine-learning models," Renewable Energy, Elsevier, vol. 151(C), pages 463-474.
    12. Qi, Jianhui & Zhao, Jianli & Xu, Yang & Wang, Yongjia & Han, Kuihua, 2018. "Segmented heating carbonization of biomass: Yields, property and estimation of heating value of chars," Energy, Elsevier, vol. 144(C), pages 301-311.
    13. Saidur, R. & Abdelaziz, E.A. & Demirbas, A. & Hossain, M.S. & Mekhilef, S., 2011. "A review on biomass as a fuel for boilers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2262-2289, June.
    14. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    15. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    16. Kargbo, Hannah & Harris, Jonathan Stuart & Phan, Anh N., 2021. "“Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    17. Gao, Evelyn & Sowlati, Taraneh & Akhtari, Shaghaygh, 2019. "Profit allocation in collaborative bioenergy and biofuel supply chains," Energy, Elsevier, vol. 188(C).
    18. Pätäri, Satu & Puumalainen, Kaisu & Jantunen, Ari & Sandstrüm, Jaana, 2011. "The interface of the energy and forest sectors--Potential players in the bioenergy business," International Journal of Production Economics, Elsevier, vol. 131(1), pages 322-332, May.
    19. Goh, Chun Sheng & Lee, Keat Teong, 2010. "A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 842-848, February.
    20. Deboni, Tamires Liza & Simioni, Flávio José & Brand, Martha Andreia & Costa, Valdeci José, 2019. "Models for estimating the price of forest biomass used as an energy source: A Brazilian case," Energy Policy, Elsevier, vol. 127(C), pages 382-391.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1418-:d:222393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.