IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i6p1604-d214451.html
   My bibliography  Save this article

Local Energy Use of Biomass from Apple Orchards—An LCA Study

Author

Listed:
  • Arkadiusz Dyjakon

    (Institute of Agricultural Engineering, Wrocław University of Environmental and Life Sciences, 51-630 Wroclaw, Poland)

  • Jan den Boer

    (Institute of Agricultural Engineering, Wrocław University of Environmental and Life Sciences, 51-630 Wroclaw, Poland)

  • Antoni Szumny

    (Department of Chemistry, Wroclaw University of Environmental and Life Science, 50-375 Wroclaw, Poland)

  • Emilia den Boer

    (Faculty of Environmental Engineering, Wroclaw University of Technology, 50-370 Wroclaw, Poland)

Abstract

Generation of heat in small and medium-size energy systems using local sources of energy is one of the best solutions for sustainable regional development, from an economic, environmental, and social point of view. Depending on the local circumstances and preferences of the agricultural activity, different types and potentials of biomass are available for energy recovery. Poland is the third-largest producer of apples in the world. The large cumulative area of apple orchards in Poland and necessity of regular tree pruning creates a significant potential for agricultural biomass residues. In this paper, the LCA analysis of a new and integrated process chain focused on the conversion of cut branches coming from apple orchards into heat is conducted. Furthermore, the obtained results of the environmental indices have been compared to traditional mulching of pruned biomass in the orchard. It was shown that in terms of the LCA analysis, the biomass harvesting, baling, and transportation to the local heat producer leads to an overall environmental gain. The cumulative Climate Change Potential for pruning to energy scenario was 92.0 kg CO 2 equivalent·ha −1 . At the same time, the mulching and leaving of the pruned biomass in the orchard (pruning to soil scenario) was associated with a CO 2 equivalent of 1690 kg·ha −1 , although the soil effect itself amounted to −5.9 kg CO 2 eq.·ha −1 . Moreover, the sensitivity analysis of the LCA showed that in the case of the PtE chain, the transportation distance of the pruned bales should be limited to a local range to maintain the positive environmental and energy effects.

Suggested Citation

  • Arkadiusz Dyjakon & Jan den Boer & Antoni Szumny & Emilia den Boer, 2019. "Local Energy Use of Biomass from Apple Orchards—An LCA Study," Sustainability, MDPI, vol. 11(6), pages 1-16, March.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:6:p:1604-:d:214451
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/6/1604/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/6/1604/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Malladi, Krishna Teja & Sowlati, Taraneh, 2018. "Biomass logistics: A review of important features, optimization modeling and the new trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 587-599.
    2. Proost, Stef & Van Dender, Kurt, 2012. "Energy and environment challenges in the transport sector," Economics of Transportation, Elsevier, vol. 1(1), pages 77-87.
    3. Boschiero, Martina & Kelderer, Markus & Schmitt, Armin O. & Andreotti, Carlo & Zerbe, Stefan, 2015. "Influence of agricultural residues interpretation and allocation procedures on the environmental performance of bioelectricity production – A case study on woodchips from apple orchards," Applied Energy, Elsevier, vol. 147(C), pages 235-245.
    4. Annette Cowie & Pete Smith & Dale Johnson, 2006. "Does Soil Carbon Loss in Biomass Production Systems Negate the Greenhouse Benefits of Bioenergy?," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(5), pages 979-1002, September.
    5. Nogueira, Carlos Eduardo Camargo & de Souza, Samuel Nelson Melegari & Micuanski, Viviane Cavaler & Azevedo, Ricardo Lessa, 2015. "Exploring possibilities of energy insertion from vinasse biogas in the energy matrix of Paraná State, Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 300-305.
    6. Rentizelas, Athanasios A. & Tolis, Athanasios J. & Tatsiopoulos, Ilias P., 2009. "Logistics issues of biomass: The storage problem and the multi-biomass supply chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 887-894, May.
    7. Alessandro Chiumenti & Davide Boscaro & Francesco Da Borso & Luigi Sartori & Andrea Pezzuolo, 2018. "Biogas from Fresh Spring and Summer Grass: Effect of the Harvesting Period," Energies, MDPI, vol. 11(6), pages 1-13, June.
    8. Arkadiusz Dyjakon, 2018. "Harvesting and Baling of Pruned Biomass in Apple Orchards for Energy Production," Energies, MDPI, vol. 11(7), pages 1-14, June.
    9. Abbasi, Tasneem & Abbasi, S.A., 2010. "Biomass energy and the environmental impacts associated with its production and utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 919-937, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sota Makino & Takeshi Onishi & Akika Itoh & Issei Sato & Tomohumi Huzita & Chihiro Kayo, 2021. "Sustainable Campus: Reducing Environmental and Financial Burdens by Using Pruned Branches for On-Campus Energy," Sustainability, MDPI, vol. 13(13), pages 1-15, July.
    2. Mariusz Jerzy Stolarski & Paweł Dudziec & Michał Krzyżaniak & Ewelina Olba-Zięty, 2021. "Solid Biomass Energy Potential as a Development Opportunity for Rural Communities," Energies, MDPI, vol. 14(12), pages 1-21, June.
    3. Jan Den Boer & Arkadiusz Dyjakon & Emilia Den Boer & Daniel García-Galindo & Techane Bosona & Girma Gebresenbet, 2020. "Life-Cycle Assessment of the Use of Peach Pruning Residues for Electricity Generation," Energies, MDPI, vol. 13(11), pages 1-16, May.
    4. Kang, Kang & Klinghoffer, Naomi B. & ElGhamrawy, Islam & Berruti, Franco, 2021. "Thermochemical conversion of agroforestry biomass and solid waste using decentralized and mobile systems for renewable energy and products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    5. Maurizio Bressan & Elena Campagnoli & Carlo Giovanni Ferro & Valter Giaretto, 2022. "Rice Straw: A Waste with a Remarkable Green Energy Potential," Energies, MDPI, vol. 15(4), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arkadiusz Dyjakon, 2018. "The Influence of the Use of Windrowers in Baler Machinery on the Energy Balance during Pruned Biomass Harvesting in the Apple Orchard," Energies, MDPI, vol. 11(11), pages 1-15, November.
    2. Saidur, R. & Abdelaziz, E.A. & Demirbas, A. & Hossain, M.S. & Mekhilef, S., 2011. "A review on biomass as a fuel for boilers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2262-2289, June.
    3. Awais, Fawad & Flodén, Jonas & Svanberg, Martin, 2021. "Logistic characteristics and requirements of Swedish wood biofuel heating plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    4. Farajiamiri, Mina & Meyer, Jörn-Christian & Walther, Grit, 2023. "Multi-objective optimization of renewable fuel supply chains regarding cost, land use, and water use," Applied Energy, Elsevier, vol. 349(C).
    5. Moretti, Luca & Milani, Mario & Lozza, Giovanni Gustavo & Manzolini, Giampaolo, 2021. "A detailed MILP formulation for the optimal design of advanced biofuel supply chains," Renewable Energy, Elsevier, vol. 171(C), pages 159-175.
    6. Teresa Enes & José Aranha & Teresa Fonseca & Domingos Lopes & Ana Alves & José Lousada, 2019. "Thermal Properties of Residual Agroforestry Biomass of Northern Portugal," Energies, MDPI, vol. 12(8), pages 1-13, April.
    7. Gilbert Ahamer, 2022. "Why Biomass Fuels Are Principally Not Carbon Neutral," Energies, MDPI, vol. 15(24), pages 1-39, December.
    8. Liu, Liansheng & Wang, Dongji & Gao, Liwei & Duan, Runze, 2020. "Distributed heating/centralized monitoring mode of biomass briquette fuel in Chinese northern rural areas," Renewable Energy, Elsevier, vol. 147(P1), pages 1221-1230.
    9. Techane Bosona & Girma Gebresenbet, 2018. "Evaluating Logistics Performances of Agricultural Prunings for Energy Production: A Logistics Audit Analysis Approach," Logistics, MDPI, vol. 2(3), pages 1-22, September.
    10. Bacenetti, Jacopo, 2019. "Heat and cold production for winemaking using pruning residues: Environmental impact assessment," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    11. Jan Den Boer & Arkadiusz Dyjakon & Emilia Den Boer & Daniel García-Galindo & Techane Bosona & Girma Gebresenbet, 2020. "Life-Cycle Assessment of the Use of Peach Pruning Residues for Electricity Generation," Energies, MDPI, vol. 13(11), pages 1-16, May.
    12. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2014. "Utilization of palm solid residue as a source of renewable and sustainable energy in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 621-632.
    13. R. N. Ossei-Bremang & F. Kemausuor, 2021. "A decision support system for the selection of sustainable biomass resources for bioenergy production," Environment Systems and Decisions, Springer, vol. 41(3), pages 437-454, September.
    14. Carlo Bisaglia & Massimo Brambilla & Maurizio Cutini & Antonio Bortolotti & Guido Rota & Giorgio Minuti & Roberto Sargiani, 2018. "Reusing Pruning Residues for Thermal Energy Production: A Mobile App to Match Biomass Availability with the Heating Energy Balance of Agro-Industrial Buildings," Sustainability, MDPI, vol. 10(11), pages 1-14, November.
    15. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    16. Zhai, Jihua & Burke, Ian T. & Stewart, Douglas I., 2021. "Beneficial management of biomass combustion ashes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    17. Dan Liu & Da Teng & Yan Zhu & Xingde Wang & Hanyang Wang, 2023. "Optimization of Process Parameters for Pellet Production from Corn Stalk Rinds Using Box–Behnken Design," Energies, MDPI, vol. 16(12), pages 1-20, June.
    18. Vasiliki Tzelepi & Myrto Zeneli & Dimitrios-Sotirios Kourkoumpas & Emmanouil Karampinis & Antonios Gypakis & Nikos Nikolopoulos & Panagiotis Grammelis, 2020. "Biomass Availability in Europe as an Alternative Fuel for Full Conversion of Lignite Power Plants: A Critical Review," Energies, MDPI, vol. 13(13), pages 1-26, July.
    19. Wang, Chengchao & Yang, Yusheng & Zhang, Yaoqi, 2012. "Rural household livelihood change, fuelwood substitution, and hilly ecosystem restoration: Evidence from China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2475-2482.
    20. Francis Chinweuba Eboh & Peter Ahlström & Tobias Richards, 2017. "Exergy Analysis of Solid Fuel-Fired Heat and Power Plants: A Review," Energies, MDPI, vol. 10(2), pages 1-29, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:6:p:1604-:d:214451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.