IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i4p1355-d748562.html
   My bibliography  Save this article

Rice Straw: A Waste with a Remarkable Green Energy Potential

Author

Listed:
  • Maurizio Bressan

    (Department of Energy, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy)

  • Elena Campagnoli

    (Department of Energy, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy)

  • Carlo Giovanni Ferro

    (Department of Mechanical and Aerospace Engineering, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy)

  • Valter Giaretto

    (Department of Energy, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy)

Abstract

With reference to the province of Novara in northwest Italy, this study aims to raise awareness about the environmental benefits that can derive from the use of alternative rice straw management practices to those currently in use, also highlighting how the use of these straws for energy purposes can be a valid alternative to the use of non-renewable resources. Using the LCA (Life Cycle Assessment) method, the two rice straw management practices currently in place (open field combustion and straw incorporation) were compared with an alternative strategy consisting in their collection and removal. The results show that removal of straw allows reducing the emissions of pollutants significantly: about one-hundredth of the PM (Particulate Matter) formation compared to the open-field burning and about one-tenth of the ozone depletion (CFCs, HCFCs, halons, etc.) compared to both the other two practices. Moreover, the LCA results show how the use of rice straw to produce energy as an alternative to conventional fuels helps to reduce the global warming potential of rice cultivation.

Suggested Citation

  • Maurizio Bressan & Elena Campagnoli & Carlo Giovanni Ferro & Valter Giaretto, 2022. "Rice Straw: A Waste with a Remarkable Green Energy Potential," Energies, MDPI, vol. 15(4), pages 1-15, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1355-:d:748562
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/4/1355/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/4/1355/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cristina Moliner & Dario Bove & Elisabetta Arato, 2020. "Co-Incineration of Rice Straw-Wood Pellets: A Sustainable Strategy for the Valorisation of Rice Waste," Energies, MDPI, vol. 13(21), pages 1-14, November.
    2. Gaurav Kumar Porichha & Yulin Hu & Kasanneni Tirumala Venkateswara Rao & Chunbao Charles Xu, 2021. "Crop Residue Management in India: Stubble Burning vs. Other Utilizations including Bioenergy," Energies, MDPI, vol. 14(14), pages 1-17, July.
    3. Antonio Torregrosa & Juan Miguel Giner & Borja Velázquez-Martí, 2021. "Equipment Performance, Costs and Constraints of Packaging and Transporting Rice Straw for Alternative Uses to Burning in the “Parc Natural l’Albufera de València” (Spain)," Agriculture, MDPI, vol. 11(6), pages 1-13, June.
    4. M. Mofijur & T.M.I. Mahlia & J. Logeswaran & M. Anwar & A.S. Silitonga & S.M. Ashrafur Rahman & A.H. Shamsuddin, 2019. "Potential of Rice Industry Biomass as a Renewable Energy Source," Energies, MDPI, vol. 12(21), pages 1-21, October.
    5. Alessia Gargiulo & Maria Leonor Carvalho & Pierpaolo Girardi, 2020. "Life Cycle Assessment of Italian Electricity Scenarios to 2030," Energies, MDPI, vol. 13(15), pages 1-16, July.
    6. Md. Washim Akram & Muhammad Firdaus Mohd Zublie & Md. Hasanuzzaman & Nasrudin Abd Rahim, 2022. "Global Prospects, Advance Technologies and Policies of Energy-Saving and Sustainable Building Systems: A Review," Sustainability, MDPI, vol. 14(3), pages 1-27, January.
    7. Arkadiusz Dyjakon & Jan den Boer & Antoni Szumny & Emilia den Boer, 2019. "Local Energy Use of Biomass from Apple Orchards—An LCA Study," Sustainability, MDPI, vol. 11(6), pages 1-16, March.
    8. Soam, Shveta & Kapoor, Manali & Kumar, Ravindra & Borjesson, Pal & Gupta, Ravi P. & Tuli, Deepak K., 2016. "Global warming potential and energy analysis of second generation ethanol production from rice straw in India," Applied Energy, Elsevier, vol. 184(C), pages 353-364.
    9. Patience Afi Seglah & Yajing Wang & Hongyan Wang & Komikouma Apelike Wobuibe Neglo & Chunyu Gao & Yuyun Bi, 2022. "Energy Potential and Sustainability of Straw Resources in Three Regions of Ghana," Sustainability, MDPI, vol. 14(3), pages 1-22, January.
    10. Gary Storey & Qinggang Meng & Baihua Li, 2022. "Leaf Disease Segmentation and Detection in Apple Orchards for Precise Smart Spraying in Sustainable Agriculture," Sustainability, MDPI, vol. 14(3), pages 1-14, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maurizio Bressan & Elena Campagnoli & Carlo Giovanni Ferro & Valter Giaretto, 2023. "A Mass Balance-Based Method for the Anaerobic Digestion of Rice Straw," Energies, MDPI, vol. 16(11), pages 1-19, May.
    2. Giulia Grisolia & Debora Fino & Umberto Lucia, 2022. "Biomethanation of Rice Straw: A Sustainable Perspective for the Valorisation of a Field Residue in the Energy Sector," Sustainability, MDPI, vol. 14(9), pages 1-22, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
    2. Aryal, Jeetendra P., 2022. "Contribution of Agriculture to Climate Change and Low-Emission Agricultural Development in Asia and the Pacific," ADBI Working Papers 1340, Asian Development Bank Institute.
    3. Ma, Chenshuo & Zhang, Yifei & Ma, Keni & Li, Chanyun, 2023. "Study on the relationship between service scale and investment cost of energy service stations," Energy, Elsevier, vol. 269(C).
    4. Mostafa Rezaei & Ali Mostafaeipour & Mojtaba Qolipour & Hamid-Reza Arabnia, 2018. "Hydrogen production using wind energy from sea water: A case study on Southern and Northern coasts of Iran," Energy & Environment, , vol. 29(3), pages 333-357, May.
    5. Mariusz Jerzy Stolarski & Paweł Dudziec & Michał Krzyżaniak & Ewelina Olba-Zięty, 2021. "Solid Biomass Energy Potential as a Development Opportunity for Rural Communities," Energies, MDPI, vol. 14(12), pages 1-21, June.
    6. Normaisharah Mamat & Mohd Fauzi Othman & Rawad Abdoulghafor & Samir Brahim Belhaouari & Normahira Mamat & Shamsul Faisal Mohd Hussein, 2022. "Advanced Technology in Agriculture Industry by Implementing Image Annotation Technique and Deep Learning Approach: A Review," Agriculture, MDPI, vol. 12(7), pages 1-35, July.
    7. Carla L. Simões & Ricardo Simoes & Ana Sofia Gonçalves & Leonel J. R. Nunes, 2023. "Environmental Analysis of the Valorization of Woody Biomass Residues: A Comparative Study with Vine Pruning Leftovers in Portugal," Sustainability, MDPI, vol. 15(20), pages 1-16, October.
    8. Maurizio Bressan & Elena Campagnoli & Carlo Giovanni Ferro & Valter Giaretto, 2023. "A Mass Balance-Based Method for the Anaerobic Digestion of Rice Straw," Energies, MDPI, vol. 16(11), pages 1-19, May.
    9. Tianjiao Cheng & Andante Hadi Pandyaswargo & Hiroshi Onoda, 2020. "Comparison of Torrefaction and Hydrothermal Treatment as Pretreatment Technologies for Rice Husks," Energies, MDPI, vol. 13(19), pages 1-20, October.
    10. Tabussam Tufail & Huma Bader Ul Ain & Farhan Saeed & Makia Nasir & Shahnai Basharat & Mahwish & Alexandru Vasile Rusu & Muzzamal Hussain & João Miguel Rocha & Monica Trif & Rana Muhammad Aadil, 2022. "A Retrospective on the Innovative Sustainable Valorization of Cereal Bran in the Context of Circular Bioeconomy Innovations," Sustainability, MDPI, vol. 14(21), pages 1-17, November.
    11. Borujeni, Nasim Espah & Karimi, Keikhosro & Denayer, Joeri F.M. & Kumar, Rajeev, 2022. "Apple pomace biorefinery for ethanol, mycoprotein, and value-added biochemicals production by Mucor indicus," Energy, Elsevier, vol. 240(C).
    12. Zhao, Yan & Damgaard, Anders & Xu, Yingjie & Liu, Shan & Christensen, Thomas H., 2019. "Bioethanol from corn stover – Global warming footprint of alternative biotechnologies," Applied Energy, Elsevier, vol. 247(C), pages 237-253.
    13. Michela Mazzoccoli & Elisabetta Arato & Cristina Moliner, 2022. "Environmental Valorization of Rice Waste as Adsorbent Material for the Removal of Nitrates from Water," Energies, MDPI, vol. 15(7), pages 1-12, April.
    14. Anand, Abhijeet & Kumar, Vivek & Kaushal, Priyanka, 2022. "Biochar and its twin benefits: Crop residue management and climate change mitigation in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    15. Rogério Marques & Fábio Matos Fernandes & Marcelo Santana Silva & Luís Oscar Martins & Francisco Gaudêncio Mendonça Freires, 2023. "Analysis of Competitiveness Factors of Wind Power: A Case study in the Alto Sertão Wind Complex in the State of Bahia, Brazil," International Journal of Energy Economics and Policy, Econjournals, vol. 13(6), pages 153-169, November.
    16. Lorenzo Ferrari & Gianluca Pasini & Umberto Desideri, 2023. "Towards a Power Production from 100% Renewables: The Italian Case Study," Energies, MDPI, vol. 16(5), pages 1-17, February.
    17. Smullen, Emma & Finnan, John & Dowling, David & Mulcahy, Patricia, 2019. "The environmental performance of pretreatment technologies for the bioconversion of lignocellulosic biomass to ethanol," Renewable Energy, Elsevier, vol. 142(C), pages 527-534.
    18. Krzysztof Mudryk & Marcin Jewiarz & Marek Wróbel & Marcin Niemiec & Arkadiusz Dyjakon, 2021. "Evaluation of Urban Tree Leaf Biomass-Potential, Physico-Mechanical and Chemical Parameters of Raw Material and Solid Biofuel," Energies, MDPI, vol. 14(4), pages 1-14, February.
    19. Rudha Khudhair Mohammed & Hooman Farzaneh, 2023. "Life Cycle Environmental Impacts Assessment of Post-Combustion Carbon Capture for Natural Gas Combined Cycle Power Plant in Iraq, Considering Grassroots and Retrofit Design," Energies, MDPI, vol. 16(3), pages 1-35, February.
    20. Kennedy Muthee & Lalisa Duguma & Judith Nzyoka & Peter Minang, 2021. "Ecosystem-Based Adaptation Practices as a Nature-Based Solution to Promote Water-Energy-Food Nexus Balance," Sustainability, MDPI, vol. 13(3), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1355-:d:748562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.