IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i8p1513-d224891.html
   My bibliography  Save this article

Implementing Agricultural Pruning to Energy in Europe: Technical, Economic and Implementation Potentials

Author

Listed:
  • Arkadiusz Dyjakon

    (Institute of Agricultural Engineering, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland)

  • Daniel García-Galindo

    (Research Centre for Energy Resources and Consumption (CIRCE), 50018 Zaragoza, Spain)

Abstract

The use of new sources of biomass residues for energy purposes in Europe is crucial for increasing the share of renewable energy sources and the limitation of carbon dioxide emissions. The residues coming from regular pruning of permanent crops are an alternative to conventional fuels. The paper is focused on the assessment of European pruning potentials in European Union (EU28) in line with the nomenclature of territorial units (NUTs) at NUTs0, NUTs2 and NUTs3 level. The assessment indicates that the yearly theoretical and technical potential of that biomass is 13.67 MtDM (or 252.0 PJ·yr −1 ) and 12.51 MtDM (or 230.6 PJ·yr −1 ), respectively. The economic potential has been assessed based on different management or exploitation models: management of pruning as a waste, self-consumption, and demand-driven mobilisation by consumption centres at small, medium and large scales. The utilisation of pruning when gathering is compulsory coincides with the technical potential. Under self-consumption, up to 10.98 MtDM per year could be effectively mobilised (202.3 PJ·yr −1 ). The creation of new value chains for delivery of pruning biomass ranges 7.30 to 8.69 MtDM per year (from 134.5 to 160.2 PJ·yr −1 ). When applying further constraints related to other existing uses the implementation of the potential further descends, ranging from 6.18 to 10.66 MtDM per year (from 113.9 to 196.4 PJ·yr −1 ). The analysis shows that the amount of available pruning residues is regionally scattered; however, most of them (ca. 80%) are located in the Mediterranean area.

Suggested Citation

  • Arkadiusz Dyjakon & Daniel García-Galindo, 2019. "Implementing Agricultural Pruning to Energy in Europe: Technical, Economic and Implementation Potentials," Energies, MDPI, vol. 12(8), pages 1-28, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1513-:d:224891
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/8/1513/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/8/1513/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Panoutsou, Calliope & Eleftheriadis, John & Nikolaou, Anastasia, 2009. "Biomass supply in EU27 from 2010 to 2030," Energy Policy, Elsevier, vol. 37(12), pages 5675-5686, December.
    2. Arkadiusz Dyjakon, 2018. "The Influence of the Use of Windrowers in Baler Machinery on the Energy Balance during Pruned Biomass Harvesting in the Apple Orchard," Energies, MDPI, vol. 11(11), pages 1-15, November.
    3. Daniel García-Galindo & Arkadiusz Dyjakon & Fernando Cay Villa-Ceballos, 2019. "Building Variable Productivity Ratios for Improving Large Scale Spatially Explicit Pruning Biomass Assessments," Energies, MDPI, vol. 12(5), pages 1-25, March.
    4. Acampora, Andrea & Croce, Sara & Assirelli, Alberto & Del Giudice, Angelo & Spinelli, Raffaele & Suardi, Alessandro & Pari, Luigi, 2013. "Product contamination and harvesting losses from mechanized recovery of olive tree pruning residues for energy use," Renewable Energy, Elsevier, vol. 53(C), pages 350-353.
    5. Arkadiusz Dyjakon, 2019. "The Influence of Apple Orchard Management on Energy Performance and Pruned Biomass Harvesting for Energetic Applications," Energies, MDPI, vol. 12(4), pages 1-16, February.
    6. Monforti, F. & Lugato, E. & Motola, V. & Bodis, K. & Scarlat, N. & Dallemand, J.-F., 2015. "Optimal energy use of agricultural crop residues preserving soil organic carbon stocks in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 519-529.
    7. Arkadiusz Dyjakon, 2018. "Harvesting and Baling of Pruned Biomass in Apple Orchards for Energy Production," Energies, MDPI, vol. 11(7), pages 1-14, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nadia Palmieri & Alessandro Suardi & Vincenzo Alfano & Luigi Pari, 2020. "Circular Economy Model: Insights from a Case Study in South Italy," Sustainability, MDPI, vol. 12(8), pages 1-11, April.
    2. Tom Karras & André Brosowski & Daniela Thrän, 2022. "A Review on Supply Costs and Prices of Residual Biomass in Techno-Economic Models for Europe," Sustainability, MDPI, vol. 14(12), pages 1-25, June.
    3. Francesco Latterini & Walter Stefanoni & Alessandro Suardi & Vincenzo Alfano & Simone Bergonzoli & Nadia Palmieri & Luigi Pari, 2020. "A GIS Approach to Locate a Small Size Biomass Plant Powered by Olive Pruning and to Estimate Supply Chain Costs," Energies, MDPI, vol. 13(13), pages 1-17, July.
    4. Arkadiusz Dyjakon & Tomasz Noszczyk, 2020. "Alternative Fuels from Forestry Biomass Residue: Torrefaction Process of Horse Chestnuts, Oak Acorns, and Spruce Cones," Energies, MDPI, vol. 13(10), pages 1-19, May.
    5. Alessandro Suardi & Francesco Latterini & Vincenzo Alfano & Nadia Palmieri & Simone Bergonzoli & Emmanouil Karampinis & Michael Alexandros Kougioumtzis & Panagiotis Grammelis & Luigi Pari, 2020. "Machine Performance and Hog Fuel Quality Evaluation in Olive Tree Pruning Harvesting Conducted Using a Towed Shredder on Flat and Hilly Fields," Energies, MDPI, vol. 13(7), pages 1-16, April.
    6. Kougioumtzis, Michael Alexandros & Kanaveli, Ioanna Panagiota & Karampinis, Emmanouil & Grammelis, Panagiotis & Kakaras, Emmanuel, 2021. "Combustion of olive tree pruning pellets versus sunflower husk pellets at industrial boiler. Monitoring of emissions and combustion efficiency," Renewable Energy, Elsevier, vol. 171(C), pages 516-525.
    7. Leonel J. R. Nunes, 2020. "Torrefied Biomass as an Alternative in Coal-Fueled Power Plants: A Case Study on Grindability of Agroforestry Waste Forms," Clean Technol., MDPI, vol. 2(3), pages 1-20, July.
    8. Jan Den Boer & Arkadiusz Dyjakon & Emilia Den Boer & Daniel García-Galindo & Techane Bosona & Girma Gebresenbet, 2020. "Life-Cycle Assessment of the Use of Peach Pruning Residues for Electricity Generation," Energies, MDPI, vol. 13(11), pages 1-16, May.
    9. Vera Sadovska & Lena Ekelund Axelson & Cecilia Mark-Herbert, 2020. "Reviewing Value Creation in Agriculture—A Conceptual Analysis and a New Framework," Sustainability, MDPI, vol. 12(12), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro Suardi & Francesco Latterini & Vincenzo Alfano & Nadia Palmieri & Simone Bergonzoli & Emmanouil Karampinis & Michael Alexandros Kougioumtzis & Panagiotis Grammelis & Luigi Pari, 2020. "Machine Performance and Hog Fuel Quality Evaluation in Olive Tree Pruning Harvesting Conducted Using a Towed Shredder on Flat and Hilly Fields," Energies, MDPI, vol. 13(7), pages 1-16, April.
    2. Arkadiusz Dyjakon, 2019. "The Influence of Apple Orchard Management on Energy Performance and Pruned Biomass Harvesting for Energetic Applications," Energies, MDPI, vol. 12(4), pages 1-16, February.
    3. Holmatov, B. & Schyns, J.F. & Krol, M.S. & Gerbens-Leenes, P.W. & Hoekstra, A.Y., 2021. "Can crop residues provide fuel for future transport? Limited global residue bioethanol potentials and large associated land, water and carbon footprints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    4. Biljana Kulišić & Tajana Radić & Mario Njavro, 2020. "Agro-Pruning for Energy as a Link between Rural Development and Clean Energy Policies," Sustainability, MDPI, vol. 12(10), pages 1-19, May.
    5. Arkadiusz Dyjakon, 2018. "The Influence of the Use of Windrowers in Baler Machinery on the Energy Balance during Pruned Biomass Harvesting in the Apple Orchard," Energies, MDPI, vol. 11(11), pages 1-15, November.
    6. Francesco Latterini & Walter Stefanoni & Alessandro Suardi & Vincenzo Alfano & Simone Bergonzoli & Nadia Palmieri & Luigi Pari, 2020. "A GIS Approach to Locate a Small Size Biomass Plant Powered by Olive Pruning and to Estimate Supply Chain Costs," Energies, MDPI, vol. 13(13), pages 1-17, July.
    7. Carlo Bisaglia & Massimo Brambilla & Maurizio Cutini & Antonio Bortolotti & Guido Rota & Giorgio Minuti & Roberto Sargiani, 2018. "Reusing Pruning Residues for Thermal Energy Production: A Mobile App to Match Biomass Availability with the Heating Energy Balance of Agro-Industrial Buildings," Sustainability, MDPI, vol. 10(11), pages 1-14, November.
    8. Tonini, Davide & Vadenbo, Carl & Astrup, Thomas Fruergaard, 2017. "Priority of domestic biomass resources for energy: Importance of national environmental targets in a climate perspective," Energy, Elsevier, vol. 124(C), pages 295-309.
    9. Amela Ajanovic & Gerfried Jungmeier & Martin Beermann & Reinhard Haas, 2012. "The Long-Term Prospects of Biofuels in the EU-15 Countries," Energies, MDPI, vol. 5(8), pages 1-16, August.
    10. Antonio Messineo & Roberto Volpe & Francesco Asdrubali, 2012. "Evaluation of Net Energy Obtainable from Combustion of Stabilised Olive Mill By-Products," Energies, MDPI, vol. 5(5), pages 1-14, May.
    11. Luigi Pari & Francesco Latterini & Walter Stefanoni, 2020. "Herbaceous Oil Crops, a Review on Mechanical Harvesting State of the Art," Agriculture, MDPI, vol. 10(8), pages 1-25, July.
    12. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    13. Kargbo, Hannah & Harris, Jonathan Stuart & Phan, Anh N., 2021. "“Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    14. Soha, Tamás & Papp, Luca & Csontos, Csaba & Munkácsy, Béla, 2021. "The importance of high crop residue demand on biogas plant site selection, scaling and feedstock allocation – A regional scale concept in a Hungarian study area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    15. Mantziaris, Stamatis & Iliopoulos, Constantine & Theodorakopoulou, Irini & Petropoulou, Eugenia, 2017. "Perennial energy crops vs. durum wheat in low input lands: Economic analysis of a Greek case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 789-800.
    16. Paiano, Annarita & Lagioia, Giovanni, 2016. "Energy potential from residual biomass towards meeting the EU renewable energy and climate targets. The Italian case," Energy Policy, Elsevier, vol. 91(C), pages 161-173.
    17. Lim, Mook Tzeng & Phan, Anh & Roddy, Dermot & Harvey, Adam, 2015. "Technologies for measurement and mitigation of particulate emissions from domestic combustion of biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 574-584.
    18. Welfle, Andrew & Gilbert, Paul & Thornley, Patricia, 2014. "Securing a bioenergy future without imports," Energy Policy, Elsevier, vol. 68(C), pages 1-14.
    19. Monika Słupska & Arkadiusz Dyjakon & Roman Stopa, 2019. "Determination of Strength Properties of Energy Plants on the Example of Miscanthus × Giganteus , Rosa Multiflora and Salix Viminalis," Energies, MDPI, vol. 12(19), pages 1-19, September.
    20. Ru Fang, Yan & Zhang, Silu & Zhou, Ziqiao & Shi, Wenjun & Hui Xie, Guang, 2022. "Sustainable development in China: Valuation of bioenergy potential and CO2 reduction from crop straw," Applied Energy, Elsevier, vol. 322(C).

    More about this item

    Keywords

    permanent crop; pruning; olive; fruit; nuts; vineyard; biomass potential; EU28;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1513-:d:224891. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.