IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v68y2018icp130-141.html
   My bibliography  Save this article

Evaluation of exclusive bus lanes in a tri-modal road network incorporating carpooling behavior

Author

Listed:
  • Yao, Jia
  • Cheng, Zhanhong
  • Shi, Feng
  • An, Shi
  • Wang, Jian

Abstract

This paper considers the evaluation of exclusive bus lanes (EBLs) in the road network with three travel modes: bus, solo driving, and carpooling. A tri-modal transportation network equilibrium model is developed to analyze the effects of EBLs under three different policies: (i) no EBLs (called Policy 1); (ii) EBLs can only be used by bus (called Policy 2); and (iii) EBLs can be used by both bus and carpooling modes (called Policy 3). By taking into account both EBLs setting scheme and bus frequencies, a combinatorial optimization model is proposed to test the performance of the tri-modal transportation system. In a traffic corridor case with single O-D pair, numerical results show that travel demand levels will remarkably influence the total system costs under different policies. The effects of average carpooling occupancy and mode choice parameters on travelers’ choice behavior are analyzed. Finally, a tri-modal network with nineteen links is used to illustrate that the system could be more efficient when different EBLs policies are adopted on different links.

Suggested Citation

  • Yao, Jia & Cheng, Zhanhong & Shi, Feng & An, Shi & Wang, Jian, 2018. "Evaluation of exclusive bus lanes in a tri-modal road network incorporating carpooling behavior," Transport Policy, Elsevier, vol. 68(C), pages 130-141.
  • Handle: RePEc:eee:trapol:v:68:y:2018:i:c:p:130-141
    DOI: 10.1016/j.tranpol.2018.05.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X17303980
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2018.05.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carrion, Carlos & Levinson, David, 2012. "Value of travel time reliability: A review of current evidence," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(4), pages 720-741.
    2. Lo, Hong K. & Yip, C. W. & Wan, K. H., 2003. "Modeling transfer and non-linear fare structure in multi-modal network," Transportation Research Part B: Methodological, Elsevier, vol. 37(2), pages 149-170, February.
    3. Konishi, Hideo & Mun, Se-il, 2010. "Carpooling and congestion pricing: HOV and HOT lanes," Regional Science and Urban Economics, Elsevier, vol. 40(4), pages 173-186, July.
    4. Lo, Hong K. & Luo, X.W. & Siu, Barbara W.Y., 2006. "Degradable transport network: Travel time budget of travelers with heterogeneous risk aversion," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 792-806, November.
    5. Khandker Nurul Habib & Yuan Tian & Hamid Zaman, 2011. "Modelling commuting mode choice with explicit consideration of carpool in the choice set formation," Transportation, Springer, vol. 38(4), pages 587-604, July.
    6. McDonnell, Simon & Zellner, Moira, 2011. "Exploring the effectiveness of bus rapid transit a prototype agent-based model of commuting behavior," Transport Policy, Elsevier, vol. 18(6), pages 825-835, November.
    7. Jun Guan Neoh & Maxwell Chipulu & Alasdair Marshall, 2017. "What encourages people to carpool? An evaluation of factors with meta-analysis," Transportation, Springer, vol. 44(2), pages 423-447, March.
    8. Bento, Antonio M. & Hughes, Jonathan E. & Kaffine, Daniel, 2013. "Carpooling and driver responses to fuel price changes: Evidence from traffic flows in Los Angeles," Journal of Urban Economics, Elsevier, vol. 77(C), pages 41-56.
    9. Xu, Huayu & Pang, Jong-Shi & Ordóñez, Fernando & Dessouky, Maged, 2015. "Complementarity models for traffic equilibrium with ridesharing," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 161-182.
    10. Basso, Leonardo J. & Guevara, Cristián Angelo & Gschwender, Antonio & Fuster, Marcelo, 2011. "Congestion pricing, transit subsidies and dedicated bus lanes: Efficient and practical solutions to congestion," Transport Policy, Elsevier, vol. 18(5), pages 676-684, September.
    11. Zhu, H.B., 2010. "Numerical study of urban traffic flow with dedicated bus lane and intermittent bus lane," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3134-3139.
    12. Khaled F. Abdelghany & Hani S. Mahmassani & Ahmed F. Abdelghany, 2007. "A Modeling Framework for Bus Rapid Transit Operations Evaluation and Service Planning," Transportation Planning and Technology, Taylor & Francis Journals, vol. 30(6), pages 571-591, September.
    13. VANOUTRIVE, Thomas & VAN CDE VIJVER, Elien & VAN MALDEREN, Lautrent & JOURQUIN, Bart, 2012. "What determines carpooling to workplaces in Belgium: location, organisation, or promotion?," LIDAM Reprints CORE 2418, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    14. Stiglic, Mitja & Agatz, Niels & Savelsbergh, Martin & Gradisar, Mirko, 2016. "Making dynamic ride-sharing work: The impact of driver and rider flexibility," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 190-207.
    15. Agatz, Niels A.H. & Erera, Alan L. & Savelsbergh, Martin W.P. & Wang, Xing, 2011. "Dynamic ride-sharing: A simulation study in metro Atlanta," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1450-1464.
    16. Wang, Rui, 2011. "Shaping carpool policies under rapid motorization: the case of Chinese cities," Transport Policy, Elsevier, vol. 18(4), pages 631-635, August.
    17. Yang, Hai & Huang, Hai-Jun, 1999. "Carpooling and congestion pricing in a multilane highway with high-occupancy-vehicle lanes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(2), pages 139-155, February.
    18. Eichler, Michael & Daganzo, Carlos F., 2006. "Bus lanes with intermittent priority: Strategy formulae and an evaluation," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 731-744, November.
    19. Agatz, Niels & Erera, Alan & Savelsbergh, Martin & Wang, Xing, 2012. "Optimization for dynamic ride-sharing: A review," European Journal of Operational Research, Elsevier, vol. 223(2), pages 295-303.
    20. Kocur, George & Hendrickson, Chris, 1983. "A model to assess cost and fuel savings from ride sharing," Transportation Research Part B: Methodological, Elsevier, vol. 17(4), pages 305-318, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Yueer & Li, Linbo & Zhang, Yahua, 2023. "Location of transit-oriented development stations based on multimodal network equilibrium: Bi-level programming and paradoxes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    2. Wang, Guangchao & Chen, Anthony & Kitthamkesorn, Songyot & Ryu, Seungkyu & Qi, Hang & Song, Ziqi & Song, Jianguo, 2020. "A multi-modal network equilibrium model with captive mode choice and path size logit route choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 293-317.
    3. Chapala, Sai Bharath Kumar & Nair, Preetha & Sreekumar, M. & Bhavathrathan, B.K., 2024. "A dynamic traffic assignment framework for policy analysis in cities with significant share of two-wheelers," Transport Policy, Elsevier, vol. 147(C), pages 125-139.
    4. Yao, Jia & Chen, Yanqin & Chen, Anthony & Liu, Zhiyuan, 2024. "Modeling link capacity constraints with physical queuing and toll in the bi-modal mixed road network including bus and car modes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ke, Jintao & Yang, Hai & Li, Xinwei & Wang, Hai & Ye, Jieping, 2020. "Pricing and equilibrium in on-demand ride-pooling markets," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 411-431.
    2. Julie Bulteau & Thierry Feuillet & Sophie Dantan, 2019. "Carpooling and carsharing for commuting in the Paris region: A comprehensive exploration of the individual and contextual correlates of their uses," Post-Print hal-02113257, HAL.
    3. Xingyuan Li & Jing Bai, 2021. "A Ridesharing Choice Behavioral Equilibrium Model with Users of Heterogeneous Values of Time," IJERPH, MDPI, vol. 18(3), pages 1-22, January.
    4. Zhong, Lin & Zhang, Kenan & (Marco) Nie, Yu & Xu, Jiuping, 2020. "Dynamic carpool in morning commute: Role of high-occupancy-vehicle (HOV) and high-occupancy-toll (HOT) lanes," Transportation Research Part B: Methodological, Elsevier, vol. 135(C), pages 98-119.
    5. Wang, Jing-Peng & Ban, Xuegang (Jeff) & Huang, Hai-Jun, 2019. "Dynamic ridesharing with variable-ratio charging-compensation scheme for morning commute," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 390-415.
    6. Wenyuan Zhou & Xuanrong Li & Zhenguo Shi & Bingjie Yang & Dongxu Chen, 2023. "Impact of Carpooling under Mobile Internet on Travel Mode Choices and Urban Traffic Volume: The Case of China," Sustainability, MDPI, vol. 15(8), pages 1-15, April.
    7. Ke, Jintao & Yang, Hai & Zheng, Zhengfei, 2020. "On ride-pooling and traffic congestion," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 213-231.
    8. Ning Ma & Ziqiang Zeng & Yinhai Wang & Jiuping Xu, 2021. "Balanced strategy based on environment and user benefit-oriented carpooling service mode for commuting trips," Transportation, Springer, vol. 48(3), pages 1241-1266, June.
    9. Cohen, Maxime C. & Jacquillat, Alexandre & Ratzon, Avia & Sasson, Roy, 2022. "The impact of high-occupancy vehicle lanes on carpooling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 186-206.
    10. Long, Jiancheng & Tan, Weimin & Szeto, W.Y. & Li, Yao, 2018. "Ride-sharing with travel time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 143-171.
    11. Tian, Li-Jun & Sheu, Jiuh-Biing & Huang, Hai-Jun, 2019. "The morning commute problem with endogenous shared autonomous vehicle penetration and parking space constraint," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 258-278.
    12. Boysen, Nils & Briskorn, Dirk & Schwerdfeger, Stefan & Stephan, Konrad, 2021. "Optimizing carpool formation along high-occupancy vehicle lanes," European Journal of Operational Research, Elsevier, vol. 293(3), pages 1097-1112.
    13. Furuhata, Masabumi & Dessouky, Maged & Ordóñez, Fernando & Brunet, Marc-Etienne & Wang, Xiaoqing & Koenig, Sven, 2013. "Ridesharing: The state-of-the-art and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 28-46.
    14. Meng Li & Guowei Hua & Haijun Huang, 2018. "A Multi-Modal Route Choice Model with Ridesharing and Public Transit," Sustainability, MDPI, vol. 10(11), pages 1-14, November.
    15. Jun Guan Neoh & Maxwell Chipulu & Alasdair Marshall, 2017. "What encourages people to carpool? An evaluation of factors with meta-analysis," Transportation, Springer, vol. 44(2), pages 423-447, March.
    16. Daganzo, Carlos F. & Ouyang, Yanfeng & Yang, Haolin, 2020. "Analysis of ride-sharing with service time and detour guarantees," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 130-150.
    17. Stiglic, M. & Agatz, N.A.H. & Savelsbergh, M.W.P. & Gradisar, M., 2016. "Enhancing Urban Mobility: Integrating Ride-sharing and Public Transit," ERIM Report Series Research in Management ERS-2016-006-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    18. André de Palma & Lucas Javaudin & Patrick Stokkink & Léandre Tarpin-Pitre, 2021. "Modelling Ridesharing in a Large Network with Dynamic Congestion," THEMA Working Papers 2021-16, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    19. Xing Wang & Niels Agatz & Alan Erera, 2018. "Stable Matching for Dynamic Ride-Sharing Systems," Transportation Science, INFORMS, vol. 52(4), pages 850-867, August.
    20. Li, Yuanyuan & Liu, Yang, 2021. "Optimizing flexible one-to-two matching in ride-hailing systems with boundedly rational users," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:68:y:2018:i:c:p:130-141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.